
Camelot Documentation
Release

Conceptive Engineering

May 28, 2013

CONTENTS

1 What’s new 3
1.1 Release 13.04.13 . 3
1.2 Release 12.06.29 . 4
1.3 Release 11.12.30 . 4
1.4 Release 11.12.29 . 4
1.5 Release 11.11.16 . 5
1.6 Release 11.09.10 . 6
1.7 Release 11.05.13 . 6
1.8 Release 10.11.27 . 7
1.9 Release 10.07.02 . 8
1.10 Release 09.12.07 . 9

2 Tutorials 11
2.1 Creating a Movie Database Application . 11
2.2 Creating a Report with Camelot . 23
2.3 Add an import wizard to an application . 29

3 Camelot Documentation 35
3.1 Camelot Installation . 35
3.2 Creating models . 37
3.3 Admin classes . 44
3.4 Customizing the Application . 52
3.5 Creating Forms . 55
3.6 Actions . 58
3.7 Documents and Reports . 65
3.8 Delegates . 68
3.9 Charts . 69
3.10 Document Management . 72
3.11 Under the hood . 72
3.12 Built in data models . 74
3.13 Fixtures : handling static data in the database . 75
3.14 Managing a Camelot project . 77
3.15 The Two Threads . 77
3.16 Frequently Asked Questions . 80

4 Migrate existing Camelot projects 83
4.1 Migrate from Camelot 11.12.30 to 12.06.29 . 83
4.2 Migrate from Camelot 12.06.29 to 13.04.13 . 85

i

5 Advanced Topics 87
5.1 Internationalization . 87
5.2 Unittests . 89
5.3 Deployment . 89
5.4 Authentication and permissions . 92
5.5 Development Guidlines . 92
5.6 Debugging Camelot and PyQt . 94

6 Camelot Enhancement Proposals 97
6.1 Unified Model Definition . 97

7 Support 99
7.1 Community . 99
7.2 Commercial . 99

ii

Camelot Documentation, Release

Release default

Date May 28, 2013

CONTENTS 1

Camelot Documentation, Release

2 CONTENTS

CHAPTER

ONE

WHAT’S NEW

1.1 Release 13.04.13

• Uses SQLAlchemy 0.8.0

• All default models migrated from Elixir to Declarative

• Replacements for most of the Elixir functions that are compatible with Declarative

• Search splits search strings between spaces and searches for a combination of the elements

• Russian translations

• The camelot.model.batch_job.BatchJob is reworked to have more robust error handling, and a batch
job becomes useable as a context manager

• Decouple the camelot.core.memento.SqlMemento from camelot.model.memento.Memento,
so the change tracking system becomes customizable.

• List of changes can be accessed from the form view

• Support for using an existing database through SQLAlchemy reflection

• Primary key columns are not editable by default

• Documents in print preview can be edited before printing

• Import and export have configurable columns

• Add camelot.view.action_steps.print_preview.PrintChart action step.

• Adapt printing of charts to matplotlib 1.0

• Fix maximum field attribute of rating fields in editor and delegate.

• Workaround for form window hiding on Mac

• The frozen columns feature has been removed in favor of the column groups

• The embedded form has been removed in favour of camelot.admin.object_admin.ObjectAdmin.get_compounding_objects()

• Unittests cover 80% of the code

• See Migrate from Camelot 12.06.29 to 13.04.13 for documentation on how to upgrade an existing Camelot
project to the latest version.

3

Camelot Documentation, Release

1.2 Release 12.06.29

• camelot_manage has been removed, since it did not contain essential functions for the development of
Camelot applications.

• Port the camelot_example application and Creating a Movie Database Application to Declarative

• Add a toolbar to the form view, configurable through the camelot.admin.object_admin.ObjectAdmin.get_form_toolbar_actions()
method.

• Move the progress widget from the removed status bar to the toolbar

• Add camelot.admin.table.ColumnGroup in the list view.

_static/controls/column_group.png

• See Migrate from Camelot 11.12.30 to 12.06.29 for documentation on how to upgrade an existing Camelot
project.

• Tracking of changes goes through the camelot.admin.object_admin.ObjectAdmin

• Cleanup of the default Camelot models :

– they can be used independently of each other

– Persons, Organizations, etc. have been moved to camelot.model.party

– Simplification of the underlying tables

– The default metadata was moved camelot.core.sql

• Store user changed column width in settings and column_width field attribute

• camelot.admin.not_editable_admin.not_editable_admin() has an actions argument

• Reworked searching for translation files

• Portuguese (Brazil) translations

• Workaround for mainwindow bug on OS X

1.3 Release 11.12.30

• Fix inclusion of stylesheets and templates in the egg

1.4 Release 11.12.29

• Import from file wizard supports importing excel files

• A number of new ActionStep classes that can be used in custom Action classes or serve as an example :

– camelot.view.action_steps.change_object.ChangeObjects

– camelot.view.action_steps.gui.CloseView

4 Chapter 1. What’s new

Camelot Documentation, Release

– camelot.view.action_steps.gui.MessageBox

– camelot.view.action_steps.select_object.SelectObject

• Move the repository to gitorious

• The toolbar in the one-to-many and many-to-many editor are configurable using the
ObjectAdmin.get_related_toolbar_actions() method.

• Spanish translations

• Possibility to add a close button to a form and to customize the form close action

• Filters can have a default value

• Main menu and toolbars are configurable in the ApplicationAdmin through the use of actions, which allows
creation of reduced main windows

• Rewrite of Camelot functions behind toolbars and menus to actions, resulting in a number of Action classes
with sample code :

– camelot.admin.action.application_action.ShowHelp

– camelot.admin.action.application_action.ShowAbout

– camelot.admin.action.application_action.Backup

– camelot.admin.action.application_action.Restore

– camelot.admin.action.form_action.CloseForm

– camelot.admin.action.list_action.OpenNewView

– camelot.admin.action.list_action.ToPreviousRow

– camelot.admin.action.list_action.ToNextRow

– camelot.admin.action.list_action.ToFirstRow

– camelot.admin.action.list_action.ToLastRow

– camelot.admin.action.list_action.ExportSpreadsheet

– camelot.admin.action.list_action.PrintPreview

– camelot.admin.action.list_action.SelectAll

– camelot.admin.action.list_action.ImportFromFile

– camelot.admin.action.list_action.ReplaceFieldContents

• Move to SQLAlchemy 7.x

• Undefer all fields that are going to be used in a view when querying the database

• Reduction of the lines of code with 4%

1.5 Release 11.11.16

• Implementation of the new actions proposal (Actions), please consult the documentation and the tutorial (Add
an import wizard to an application) of the actions to ease the migration. Most old style actions can be replaced
with the new style action camelot.admin.action.list_action.CallMethod

• Delayed creation of widgets on tabs to improve performance for screens with lots of fields

• Move to migrate 7.1

1.5. Release 11.11.16 5

Camelot Documentation, Release

• New splashscreen

• Italian translations

• PySide compatibility

1.6 Release 11.09.10

• Refresh reexecutes queries in the table view

• Deleted entities are grayed out in the GUI if they are deleted when visible

• Add setup.py to new projects for easy packaging

• The settings mechanism becomes plugable

• Print preview does pdf export when no printer is available

• Wizard to create a new project

_static/actionsteps/change_object.png

• API documentation integrated with sphinx

• camelot.core.exception.UserException, a subclass of Exception that can be used to inform the
user in a gentle way he should behave different.

_static/controls/user_exception.png

• Reduced memory usage

• Experimental PySide support

• Table views are sorted by primary key to avoid row flicker

• German, French and Dutch translations

• Generation of .po files integrated with setuptools

• Fixes of VirtualAddress editor

• example renamed to camelot_example to resolve naming conflicts with other projects

1.7 Release 11.05.13

• Faster opening of forms

• ‘Home’ tab with application actions

• add legend function to chart container

6 Chapter 1. What’s new

Camelot Documentation, Release

• Workspace maximizes when double clicking on tab bar

• Fix tab behavour of some editors

• Support for editing columns in the frozen part of a table view

• New DateTime Editor

_static/editors/DateTimeEditor_editable.png

• More intuitive Code editor

• More intuitive navigation pane

_static/controls/navigation_pane.png

• progress dialog when records are deleted

• FileEditor supports removing files after copying them

• EntityAdmin changes

– supports objects mapped with plain SQLAlchemy, documentation on how to use this

– confirm_delete reworked to delete_mode

– expanded_list_search option to tune which fields show up

• ApplicationAdmin changes

– actions_changed_signal

– application actions show up in desktop workspace

_static/controls/desktop_workspace.png

• postgres support for backup / restore

• new actions : DocxApplicationAction, PixmapFormAction

• Most editors now support background_color, editable and tooltip as dynamic attributes

1.8 Release 10.11.27

• Tab based desktop

• Faster table view

1.8. Release 10.11.27 7

Camelot Documentation, Release

• Improved search queries

• Much more dynamic field attributes : tooltip, background_color, editable, choices, prefix, suffix, arrow

• Document merge wizard

• Support for SQLAlchemy 0.6.x

• Charts and matplotlib integration

_static/editors/ChartEditor_editable.png

• Move from PyExcelerator to xlwt and xlrd

• Move to new style signal/slot connections

• Support for frozen columns in a table view

• Faster backup and restore

1.9 Release 10.07.02

• Expanded search and filter options

_static/controls/header_widget.png

• Search works for integer, date and float fields

_static/controls/search_control.png

• Sorting in table views and OneToMany widgets

• Importer forces validation before importing

• User translatable labels on forms

• Litebox image preview for image fields

• New editors and delegates :

– NoteDelegate

8 Chapter 1. What’s new

Camelot Documentation, Release

_static/editors/NoteEditor_editable.png

– LabelDelegate

– TextBoolDelegate

• i18n improvements

• Fix date editor on windows

• Add a default model to store batch job information

• Backup and restore available from the File menu

• More documentation

1.10 Release 09.12.07

• Sqlalchemy 5.6 compatible

• Dynamic background colors and tooltips

_static/snippets/background_color.png

• Generic import wizard

• The busy indicator in the status bar

• Support for lazy translations

• Remove PIL dependency and only depend on QImage

• Support multiple levels of class inheritance in the model

• Various bugfixes, usability and speed improvements

• Code cleanup

Contents:

1.10. Release 09.12.07 9

Camelot Documentation, Release

10 Chapter 1. What’s new

CHAPTER

TWO

TUTORIALS

This section contains various tutorials that will help the reader get a feeling of Camelot. We assume that the reader
has some knowledge of Python.

The reader can read the following sub-sections in any order.

2.1 Creating a Movie Database Application

In this tutorial we will create a fully functional movie database application with Camelot. We assume Camelot is
properly installed. An all in one installer for Windows is available as an SDK to develop Camelot applications (Python
SDK).

2.1.1 Setup Spyder

In this section, we will explain how to setup the Spyder IDE for developing a Camelot project. If you are not using
Spyder, you can skip this and jump to the next section.

Start → All Programs → Python SDK → Spyder

Within Spyder, open the Project Explorer :

View → Windows and toolbars → Project explorer

In the Project Explorer change the workspace directory, to the directory where you want to put your Camelot Projects.

11

http://www.python.org
http://www.conceptive.be/python-sdk.html
http://www.conceptive.be/python-sdk.html

Camelot Documentation, Release

Next, still in the Project Explorer, right click to create a new project using :

New Project

Enter Videostore as the project name.

12 Chapter 2. Tutorials

Camelot Documentation, Release

2.1.2 Starting a new Camelot project

We begin with the creation of a new Camelot project, using the camelot_admin tool :

Start → All Programs → Python SDK → New Camelot Application

Note: From the command prompt (or shell), go to the directory in which the new project should be created. Type the
following command:

python -m camelot.bin.camelot_admin

A dialog appears where the basic information of the application can be filled in. Select the newly created Videostore
directory as the location of the source code.

2.1. Creating a Movie Database Application 13

Camelot Documentation, Release

Press OK to generate the source code of the project. The source code should now appear in the selected directory.

2.1.3 Main Window and Views

To run the application, double click on the main.py file in Spyder, which contains the entry point of your Camelot
application and run this file.

Run → Run → Ok

Note: From the command prompt, simply start the script

python main.py

your Qt GUI should look like the one we show in the picture below:

14 Chapter 2. Tutorials

http://www.qt-project.org

Camelot Documentation, Release

The application has a customizable menu and toolbar, a left navigation pane, and a central area, where default the
Home tab is opened, on which nothing is currently displayed.

The navigation pane has its first section expanded.

2.1. Creating a Movie Database Application 15

Camelot Documentation, Release

The navigation pane uses Sections to group Actions. Each button in the navigation pane represents a Section, and each
entry of the navigation tree is an Action. Most standard Actions open a single table view of an Entity in a new tab.

Notice that the application disables most of the menus and the toolbar buttons. When we open a table view, more
options become available.

Entities are opened in the active tab, unless they are opened by selecting Open in New Tab from the context menu
(right click) of the entity link, which will obviously open a new tab to right. Tabs can be closed by clicking the X in
the tab itself.

16 Chapter 2. Tutorials

Camelot Documentation, Release

Each row is a record with some fields that we can edit (others might not be editable). Let’s now add a new row by
clicking on the new icon (icon farthest the the left in the toolbar above the navigation pane).

We now see a new window, containing a form view with additional fields. Forms label required fields in bold.

Fill in a first and last name, and close the form. Camelot will automatically validate and echo the changes to the
database. We can reopen the form by clicking on the blue folder icon in the first column of each row of the table.
Notice also that there is now an entry in our table.

2.1. Creating a Movie Database Application 17

Camelot Documentation, Release

That’s it for basic usages of the interface. Next we will write code for our database model.

2.1.4 Creating the Movie Model

Let’s first take a look at the main.py in our project directory. It contains a my_settings object which is appended to
the global settings. The Global settings object contains the global configuration for things such as database and file
location.

Now we can look at model.py. Camelot has already imported some classes for us. They are used to create our
entities. Let’s say we want a movie entity with a title, a short description, a release date, and a genre.

The aforementioned specifications translate into the following Python code, that we add to our model.py module:

from sqlalchemy import Unicode, Date
from sqlalchemy.schema import Column
from camelot.core.orm import Entity
from camelot.admin.entity_admin import EntityAdmin

class Movie(Entity):

__tablename__ = ’movie’

title = Column(Unicode(60), nullable = False)

18 Chapter 2. Tutorials

Camelot Documentation, Release

short_description = Column(Unicode(512))
release_date = Column(Date())
genre = Column(Unicode(15))

Note: The complete source code of this tutorial can be found in the camelot_example folder of the Camelot
source code.

Movie inherits camelot.core.orm.Entity, which is the declarative base class for all objects that should be
stored in the database. We use the __tablename__ attribute to to name the table ourselves in which the data will
be stored, otherwise a default tablename would have been used.

Our entity holds four fields that are stored in columns in the table.

title = Column(Unicode(60), nullable = False)

title holds up to 60 unicode characters, and cannot be left empty:

short_description = Column(Unicode(512))

short_description can hold up to 512 characters:

release_date = Column(Date())
genre = Column(Unicode(15))

release_date holds a date, and genre up to 15 unicode characters:

For more information about defining models, refer to the SQLAlchemy Declarative extension.

The different SQLAlchemy column types used are described here. Finally, custom Camelot fields are documented in
the section camelot-column-types.

Let’s now create an EntityAdmin subclass

2.1.5 The EntityAdmin Subclass

We have to tell Camelot about our entities, so they show up in the GUI (Graphical User Interface). This is one of the
purposes of camelot.admin.entity_admin.EntityAdmin subclasses. After adding the EntityAdmin
subclass, our Movie class now looks like this:

class Movie(Entity):

__tablename__ = ’movie’

title = Column(Unicode(60), nullable = False)
short_description = Column(Unicode(512))
release_date = Column(Date())
genre = Column(Unicode(15))

def __unicode__(self):
return self.title or ’Untitled movie’

class Admin(EntityAdmin):
verbose_name = ’Movie’
list_display = [’title’, ’short_description’, ’release_date’, ’genre’]

We made Admin an inner class to strengthen the link between it and the Entity subclass. Camelot does not force
us. Assign your EntityAdmin class to the Admin Entity member to put it somewhere else.

2.1. Creating a Movie Database Application 19

http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html
http://www.sqlalchemy.org
http://docs.sqlalchemy.org/en/rel_0_7/core/types.html

Camelot Documentation, Release

verbose_name will be the label used in navigation trees.

The last attribute is interesting; it holds a list containing the fields we have defined above. As the name suggests,
list_display tells Camelot to only show the fields specified in the list. list_display fields are also taken as
the default fields to show on a form.

In our case we want to display four fields: title, short_description, release_date, and genre (that is,
all of them.)

The fields displayed on the form can optionally be specified too in the form_display attribute.

We also add a __unicode__() method that will return either the title of the movie entity or ’Untitled movie’
if title is empty. The __unicode__() method will be called in case Camelot needs a textual representation of an
object, such as in a window title.

Let’s move onto the last piece of the puzzle.

2.1.6 Configuring the Application

We are now working with application_admin.py. One of the tasks of application_admin.py is to
specify the sections in the left pane of the main window.

The created application has a class, MyApplicationAdmin. This class is a subclass of
camelot.admin.application_admin.ApplicationAdmin, which is used to control the overall
look and feel of every Camelot application.

To change sections in the left pane of the main window, simply overwrite the get_sections method, to return a
list of the desired sections. By default this method contains:

def get_sections(self):
from camelot.model.memento import Memento
from camelot.model.i18n import Translation
return [Section(_(’My classes’),

self,
Icon(’tango/22x22/apps/system-users.png’),
items = []),

Section(_(’Configuration’),
self,
Icon(’tango/22x22/categories/preferences-system.png’),
items = [Memento, Translation])

]

which will display two buttons in the navigation pane, labelled ’My classes’ and ’Configurations’, with
the specified icon next to each label. And yes, the order matters.

We need to add a new section for our Movie entity, this is done by extending the list of sections returned by the
get_sections method with a Movie section:

from videostore.model import Movie
return [Section(_(’Movie’),

self,
Icon(’tango/22x22/apps/system-users.png’),
items = [Movie]),

Section(_(’Configuration’),
self,
Icon(’tango/22x22/categories/preferences-system.png’),
items = [Memento, Translation])

]

20 Chapter 2. Tutorials

Camelot Documentation, Release

The constructor of a section object takes the name of the section, a reference to the application admin object, the icon
to be used and the items in the section. The items is a list of the entities for which a table view should shown.

Camelot comes with the Tango icon collection; we use a suitable icon for our movie section.

We can now try our application.

We see a new button the navigation pane labelled ‘Movies’. Clicking on it fills the navigation tree with the only entity
in the movies’s section. Clicking on this tree entry opens the table view. And if we click on the blue folder of each
record, a form view appears as shown below.

That’s it for the basics of defining an entity and setting it for display in Camelot. Next we look at relationships between
entities.

2.1.7 Relationships

We will be using SQLAlchemy’s sqlalchemy.orm.relationship API. We’ll relate a director to each movie.
So first we need a Director entity. We define it as follows:

class Director(Entity):

__tablename__ = ’director’

name = Column(Unicode(60))

Even if we define only the name column, Camelot adds an id column containing the primary key of the Director
Entity. It does so because we did not define a primary key ourselves. This primary key is an integer number, unique
for each row in the director table, and as such unique for each Director object.

Next, we add a reference to this primary key in the movie table, this is called the foreign key. This foreign key column,
called director_id will be an integer number as well, with the added constraint that it can only contain values that
are present in the director table its id column.

Because the director_id column is only an integer, we need to add the director attribute of type
relationship. This will allow us to use the director property as a Director object related to a Movie ob-
ject. The relationship attribute will find out about the director_id column and use it to attach a Director
object to a Movie object

2.1. Creating a Movie Database Application 21

http://tango.freedesktop.org/Tango_Icon_Library

Camelot Documentation, Release

from sqlalchemy.schema import ForeignKey
from sqlalchemy.orm import relationship

class Movie(Entity):

__tablename__ = ’movie’

title = Column(Unicode(60), nullable = False)
short_description = Column(Unicode(512))
release_date = Column(Date())
genre = Column(Unicode(15))

director_id = Column(Integer, ForeignKey(’director.id’))
director = relationship(’Director’,

backref = ’movies’)

class Admin(EntityAdmin):
verbose_name = ’Movie’
list_display = [’title’,

’short_description’,
’release_date’,
’genre’,
’director’]

def __unicode__(self):
return self.title or ’untitled movie’

We also inserted ’director’ in list_display.

To be able to have the movies accessible from a director, a backref is defined in the director relationship. This will
result in a movies attribute for each director, containing a list of movie objects.

Our Director entity needs an administration class as well. We will also add __unicode__() method as sug-
gested above. The entity now looks as follows:

class Director(Entity):
__tablename__ = ’director’

name = Column(Unicode(60))

class Admin(EntityAdmin):
verbose_name = ’Director’
list_display = [’name’]
form_display = list_display + [’movies’]

def __unicode__(self):
return self.name or ’unknown director’

Note: Whenever the model changes, the database needs to be updated. This can be done by hand, or by dropping and
recreating the database (or deleting the sqlite file). By default Camelot stores the data in an local directory specified
by the operating system. Look in the startup logs to see where they are stored on your system, look for a line like

[INFO] [camelot.core.conf] - store database and media in /home/username/.camelot/videostore

For completeness the two entities are once again listed below:

class Movie(Entity):

22 Chapter 2. Tutorials

Camelot Documentation, Release

__tablename__ = ’movie’

title = Column(Unicode(60), nullable = False)
short_description = Column(Unicode(512))
release_date = Column(Date())
genre = Column(Unicode(15))

director_id = Column(Integer, ForeignKey(’director.id’))
director = relationship(’Director’,

backref = ’movies’)

class Admin(EntityAdmin):
verbose_name = ’Movie’
list_display = [’title’,

’short_description’,
’release_date’,
’genre’,
’director’]

def __unicode__(self):
return self.title or ’untitled movie’

class Director(Entity):
__tablename__ = ’director’

name = Column(Unicode(60))

class Admin(EntityAdmin):
verbose_name = ’Director’
list_display = [’name’]
form_display = list_display + [’movies’]

def __unicode__(self):
return self.name or ’unknown director’

The last step is to fix application_admin.py by adding the following lines to the Director entity to the Movie
section:

Section(’Movies’,
self,
Icon(’tango/22x22/mimetypes/x-office-presentation.png’),
items = [Movie, Director])

This takes care of the relationship between our two entities.

We have just learned the basics of Camelot, and have a nice movie database application we can play with. In another
tutorial, we will learn more advanced features of Camelot.

2.2 Creating a Report with Camelot

With the Movie Database Application as our starting point, we’re going to use the reporting framework in this tutorial.
We will create a report of each movie, which we can access from the movie detail page.

2.2. Creating a Report with Camelot 23

Camelot Documentation, Release

2.2.1 Massaging the model

First of all we need to create a button to access our report. This is easily done by specifying a form_action, right in the
Admin subclass of the model. Our appended code will be:

form_actions = [MovieSummary()]

The action is described in the MovieSummary class, which we’ll discuss next. Note that it needs to imported, obvi-
ously:

from movie_summary import MovieSummary

So the movie model admin will look like this:

class Admin(EntityAdmin):
from movie_summary import MovieSummary
verbose_name = _(’Movie’)
list_display = [

’title’,
’short_description’,
’release_date’,
’genre’,
’director’

]
form_display = [

’title’,
’cover_image’,
’short_description’,
’release_date’,
’genre’,
’director’

]
form_actions = [

MovieSummary()
]

2.2.2 The Summary class

In the MovieSummary class, which is a child class of camelot.admin.action.base.Action, we need to
override just one method; the model_run() method, which has the model_context object as its argument. This
makes accessing the Movie object very easy as we’ll see in a minute. The model_run method will yield ..., have a
guess.... Exactly, a print preview:

class MovieSummary(Action):

verbose_name = _(’Summary’)

def model_run(self, model_context):
from camelot.view.action_steps import PrintHtml
movie = model_context.get_object()
yield PrintHtml("<h1>This will become the movie report of %s!</h1>" % movie.title)

You can already test this. You should see a button in the “Actions” section, on the right of the Movie detail page. Click
this and a print preview should open with the text you let the html method return.

24 Chapter 2. Tutorials

Camelot Documentation, Release

2.2. Creating a Report with Camelot 25

Camelot Documentation, Release

Now let’s make it a bit fancier.

2.2.3 Using Jinja templates

Install and add Jinja2 to your PYTHONPATH. You can find it here: http://jinja.pocoo.org/2/ or at the cheeseshop
http://pypi.python.org/pypi/Jinja2 . Now let’s use its awesome powers.

First we’ll make a base template. This will determine our look and feel for all the report pages. This is basically html
and css with block definitions. Later we’ll create the page movie summary template which will contain our model
data. The movie summary template will inherit the base template, and provide content for the aforementioned blocks.
The base template could look something like:

<html>
<head>

<title>{% block page_head_title %}{% endblock %}</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<style type="text/css">

body, html {
font-family: Verdana, Arial, sans-serif;

}
{% block styles %}{% endblock %}

</style>
</head>
<body>

26 Chapter 2. Tutorials

http://jinja.pocoo.org/2/
http://pypi.python.org/pypi/Jinja2

Camelot Documentation, Release

<table id="page_header" width="100%">
<tr>
<td><h1>{% block page_header %}{% endblock %}</h1></td>
<td align="right">{% block page_header_right %}{% endblock %}</td>

</tr>

</table>
<hr>
<h2 id="page_title"><center>{% block page_title %}{% endblock %}</center></h2>
<hr>
{% block page_content %}{% endblock %}
<hr>
<div id="page_footer">{% block page_footer %}{% endblock %}</div>

</body>
</html>

We’ll save this file as base.html in a directory called templates in our videostore. Like this base template, the movie
summary template is html and css. Take a look at the example first:

{% extends ’base.html’ %}
{% block styles %}{{ style }}{% endblock %}
{% block page_head_title %}{{ title }}{% endblock %}
{% block page_title %}{{ title }}{% endblock %}
{% block page_header %}{{ header }}{% endblock %}
{% block page_header_right %}
{% if cover %}

{% else %}

(no cover)
{% endif %}
{% endblock %}
{% block page_content %}{{ content }}{% endblock %}
{% block page_footer %}{{ footer }}{% endblock %}

First we extend the base template, that way we don’t need to worry about the boilerplate stuff, and keep our pages
consistent, provided we create more reports of course. We can now fill in the blanks, erm blocks from the base
template. We do that with placeholders which we’ll define in the html method of our MovieSummary class. This way
we can even add style to the page:

{% block styles %}{{ style }}{% endblock %}

We’ll define this later. The templating language also allows basic flow control:

{% if cover %}

{% else %}
(no cover)

{% endif %}

If there is no cover image, we’ll show the string “(no cover)”. We’ll save this file as movie_summary.html in the
templates directory.

Like i said earlier, we now need to define which values will go in the placeholders, so let’s update our html method in
the MovieSummary class. First, we import the needed elements:

import datetime
from jinja import Environment, FileSystemLoader
from pkg_resources import resource_filename

2.2. Creating a Report with Camelot 27

Camelot Documentation, Release

import videostore
from camelot.core.conf import settings

We’ll be printing a date, so we’ll need datetime. The Jinja classes to make use of our templates. And to locate our
templates, we’ll use the resource module, with our videostore. And load up the Jinja environment ...

fileloader = FileSystemLoader(resource_filename(videostore.__name__, ’templates’))
e = Environment(loader=fileloader)

Now we need to create a context dictionary to provide data to the templates. The keys of this dictionary are the
placeholders we used in our movie_summary template, the values we can use from the model, which is passed as the
o argument in the html method:

context = {
’header’:o.title,
’title’:’Movie Summary’,
’style’:’.label { font-weight:bold; }’,
’content’:’Description: %s
\

Release date: %s
\
Genre: %s
\
Director: %s’
% (o.short_description, o.release_date, o.genre, o.director),

’cover’: os.path.join(settings.CAMELOT_MEDIA_ROOT(), ’covers’, o.cover_image.name),
’footer’:’
copyright %s - Camelot’ % datetime.datetime.now().year
}

Plain old Python dictionary. Check it out, we can even pass css in our setup.

Finally, we’ll get the template from the Jinja environment and return the rendered result of our context:

t = e.get_template(’movie_summary.html’)
return t.render(context)

So our finished method eventually looks like this:

from camelot.admin.action import Action

class MovieSummary(Action):

verbose_name = _(’Summary’)

def model_run(self, model_context):
from camelot.view.action_steps import PrintHtml
import datetime
import os
from jinja import Environment, FileSystemLoader
from pkg_resources import resource_filename
import videostore
from camelot.core.conf import settings

fileloader = FileSystemLoader(resource_filename(videostore.__name__, ’templates’))
e = Environment(loader=fileloader)
movie = model_context.get_object()
context = {

’header’:movie.title,
’title’:’Movie Summary’,
’style’:’.label { font-weight:bold; }’,
’content’:’Description: %s
\

Release date: %s
\
Genre: %s
\

28 Chapter 2. Tutorials

Camelot Documentation, Release

Director: %s’
% (movie.short_description, movie.release_date, movie.genre, movie.director),

’cover’: os.path.join(settings.CAMELOT_MEDIA_ROOT(), ’covers’, movie.cover_image.name),
’footer’:’
copyright %s - Camelot’ % datetime.datetime.now().year

}
t = e.get_template(’movie_summary.html’)
yield PrintHtml(t.render(context))

What are you waiting for? Go try it out! You should see something like this:

2.3 Add an import wizard to an application

In this tutorial we will add an import wizard to the movie database application created in the Creating a Movie
Database Application tutorial.

We assume Camelot is properly installed and the movie database application is working.

_static/controls/main_window.png

2.3. Add an import wizard to an application 29

Camelot Documentation, Release

2.3.1 Introduction

Most applications need a way to import data. This data is often delivered in files generated by another application
or company. To demonstrate this process we will build a wizard that allows the user to import cover images into the
movie database. For each image the user selects, a new Movie will be created with the selected image as a cover
image.

2.3.2 Create an action

All user interaction in Camelot is handled through Actions. For actions that run in the context of the application, we use
the Application Actions. We first create a file importer.py in the same directory as application_admin.py.

In this file we create subclass of camelot.admin.action.Action which will be the entry point of the import
wizard:

from camelot.admin.action import Action
from camelot.core.utils import ugettext_lazy as _

class ImportCovers(Action):
verbose_name = _(’Import cover images’)

def model_run(self, model_context):
yield

So now we haven an ImportCovers action. Such an action has a verbose_name class attribute with the name
of the action as shown to the user.

The most important method of the action is the model_run method, which will be triggered when the user clicks
the action. This method should be a generator that yields an object whenever user interaction is required. Everything
that happens inside the model_run method happens in a different thread than the GUI thread, so it will not block the
GUI.

2.3.3 Add the action to the GUI

Now the user needs to be able to trigger the action. We edit the application_admin.py file and make sure the
ImportCoversAction is imported.

from camelot_example.importer import ImportCovers

Then we add an instance of the ImportCovers action to the sections defined in the get_sections method of
the ApplicationAdmin:

Section(_(’Movies’),
self,
Icon(’tango/22x22/mimetypes/x-office-presentation.png’),
items = [Movie,

Tag,
VisitorReport,

VisitorsPerDirector,
ImportCovers()]),

This will make sure the action pops up in the Movies section of the application.

30 Chapter 2. Tutorials

Camelot Documentation, Release

_static/controls/navigation_pane.png

2.3.4 Select the files

To make the action do something useful, we will implement its model_runmethod. Inside the model_runmethod,
we can yield various camelot.admin.action.base.ActionStep objects to the GUI. An ActionStep
is a part of the action that requires user interaction (the user answering a question). The result of this interaction is
returned by the yield statement.

To ask the user for a number of image files to import, we will pop up a file selection dialog inside the model_run
method:

def model_run(self, model_context):
from camelot.view.action_steps import (SelectFile,

UpdateProgress,
Refresh,
FlushSession)

select_image_files = SelectFile(’Image Files (*.png *.jpg);;All Files (*)’)
select_image_files.single = False
file_names = yield select_image_files
file_count = len(file_names)

The yield statement returns a list of file names selected by the user.

_static/actionsteps/select_file.png

2.3.5 Create new movies

First make sure the Movie class has an camelot.types.Image field named cover which will store the image
files.

cover = Column(camelot.types.Image(upload_to = ’covers’))

Next we add to the model_run method the actual creation of new movies.

import os
from sqlalchemy import orm
from camelot.core.orm import Session
from camelot_example.model import Movie

movie_mapper = orm.class_mapper(Movie)
cover_property = movie_mapper.get_property(’cover’)
storage = cover_property.columns[0].type.storage
session = Session()

2.3. Add an import wizard to an application 31

http://docs.python.org/dev/reference/simple_stmts.html#yield
http://docs.python.org/dev/reference/simple_stmts.html#yield
http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

for i, file_name in enumerate(file_names):
yield UpdateProgress(i, file_count)
title = os.path.splitext(os.path.basename(file_name))[0]
stored_file = storage.checkin(unicode(file_name))
movie = Movie(title = unicode(title))
movie.cover = stored_file

yield FlushSession(session)

In this part of the code several things happen :

Store the images

In the first lines, we do some sqlalchemy magic to get access to the storage attribute of the cover field. This
storage attribute is of type camelot.core.files.storage.Storage. The Storage represents the files
managed by Camelot.

Create Movie objects

Then for each file, a new Movie object is created with as title the name of the file. For the cover attribute, the file is
checked in into the Storage. This actually means the file is copied from its original directory to a directory managed
by Camelot.

Write to the database

In the last line, the session is flushed and thus all changes are written to the database. The
camelot.view.action_steps.orm.FlushSession action step flushes the session and propagetes the
changes to the GUI.

Keep the user informed

For each movie imported, a camelot.view.action_steps.update_progress.UpdateProgress ob-
ject is yield to the GUI to inform the user of the import progress. Each time such an object is yielded, the progress
bar is updated.

_static/controls/progress_dialog.png

2.3.6 Refresh the GUI

The last step of the model_run method will be to refresh the GUI. So if the user has the Movies table open when
importing, this table will show the newly created movies.

yield Refresh()

2.3.7 Result

This is how the resulting importer.py file looks like :

from camelot.admin.action import Action
from camelot.core.utils import ugettext_lazy as _
from camelot.view.art import Icon

32 Chapter 2. Tutorials

http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

class ImportCovers(Action):
verbose_name = _(’Import cover images’)
icon = Icon(’tango/22x22/mimetypes/image-x-generic.png’)

begin select files
def model_run(self, model_context):

from camelot.view.action_steps import (SelectFile,
UpdateProgress,
Refresh,
FlushSession)

select_image_files = SelectFile(’Image Files (*.png *.jpg);;All Files (*)’)
select_image_files.single = False
file_names = yield select_image_files
file_count = len(file_names)

end select files
begin create movies

import os
from sqlalchemy import orm
from camelot.core.orm import Session
from camelot_example.model import Movie

movie_mapper = orm.class_mapper(Movie)
cover_property = movie_mapper.get_property(’cover’)
storage = cover_property.columns[0].type.storage
session = Session()

for i, file_name in enumerate(file_names):
yield UpdateProgress(i, file_count)
title = os.path.splitext(os.path.basename(file_name))[0]
stored_file = storage.checkin(unicode(file_name))
movie = Movie(title = unicode(title))
movie.cover = stored_file

yield FlushSession(session)
end create movies
begin refresh

yield Refresh()
end refresh

2.3.8 Unit tests

Once an action works, its important to keep it working as the development of the application continues. One of the
advantages of working with generators for the user interaction, is that its easy to simulate the user interaction towards
the model_run() method of the action. This is done by using the send() method of the generator that is returned
when calling model_run() :

def test_example_application_action(self):
from camelot_example.importer import ImportCovers
from camelot_example.model import Movie
count the number of movies before the import
movies = Movie.query.count()
create an import action
action = ImportCovers()
generator = action.model_run(None)
select_file = generator.next()
self.assertFalse(select_file.single)

2.3. Add an import wizard to an application 33

Camelot Documentation, Release

pretend the user selected a file
generator.send([os.path.join(os.path.dirname(__file__), ’..’, ’camelot_example’, ’media’, ’covers’, ’circus.png’)])
continue the action till the end
list(generator)
a movie should be inserted
self.assertEqual(movies + 1, Movie.query.count())

2.3.9 Conclusion

We went through the basics of the action framework Camelot :

• Subclassing a camelot.admin.action.Action class

• Implementing the model_run method

• yield camelot.admin.action.base.ActionStep objects to interact with the user

• Add the camelot.admin.action.base.Action object to a camelot.admin.section.Section
in the side pane

More camelot.admin.action.base.ActionStep classes can be found in the
camelot.view.action_steps module.

34 Chapter 2. Tutorials

http://docs.python.org/dev/reference/simple_stmts.html#yield

CHAPTER

THREE

CAMELOT DOCUMENTATION

This is the reference documentation for developing projects using the Camelot library. The first time Camelot devel-
oper is encouraged to read Creating models and Admin classes.

The section The Two Threads is for developers whishing to maintain a responsive UI when faced with significant
delays in their application code.

All other sections can be read on an as needed base.

3.1 Camelot Installation

3.1.1 All in one Windows installer

When working on Windows, the easiest way to get up and running is through the Conceptive Python SDK.

35

http://www.conceptive.be/python-sdk.htm

Camelot Documentation, Release

This SDK is a Python distribution targeted at the development and deployment of QT based applications. This all in
one installation of Camelot with all its dependencies is available in the shop.

3.1.2 From the Python Package Index

First, make sure you have setup tools installed, Setup tools. If you are using a debian based distribution, you can type:

sudo apt-get install python-setuptools

Then use easy_install to install Camelot, under Linux this would be done by typing:

sudo easy_install camelot

3.1.3 Packages

Linux distributions often offer packages for various applications, including Camelot and its dependencies :

• OpenSUSE build service.

36 Chapter 3. Camelot Documentation

http://www.conceptive.be/shop.html
http://pypi.python.org/pypi/setuptools
https://build.opensuse.org/project/show?project=home%3Afrispete%3APyQt

Camelot Documentation, Release

3.1.4 From source

When installing Camelot from source, you need to make sure all dependencies are installed and available in your
PYTHONPATH.

Dependencies

In addition to PyQt 4.8 and Qt 4.8, Camelot needs these libraries :

SQLAlchemy==0.8.0 Jinja2==2.6 chardet==2.1.1 xlwt==0.7.4 xlrd==0.9.0

Releases

The source code of a release can be downloaded from the Python Package Index and then extracted:

tar xzvf Camelot-10.07.02.tar.gz

Repository

The latest and greatest version of the source can be checked out from the Bitbucket repository:

hg clone https://bitbucket.org/conceptive/camelot

Adapting PYTHONPATH

You need to make sure Camelot and all its dependencies are in the PYTHONPATH before you start using it.

3.1.5 Verifiy the installation

To verify if you have Camelot installed and available in the PYTHONPATH, fire up a python interpreter:

python

and issue these commands:

>>> import camelot
>>> print camelot.__version__
>>> import sqlalchemy
>>> print sqlalchemy.__version__
>>> import PyQt4

None of them should raise an ImportError.

3.2 Creating models

Camelot makes it easy to create views for any type of Python objects.

SQLAlchemy is a very powerful Object Relational Mapper (ORM) with lots of possibilities for handling simple
or sophisticated datastructures. The SQLAlchemy website has extensive documentation on all these features. An
important part of Camelot is providing an easy way to create views for objects mapped through SQLAlchemy.

SQLAlchemy comes with the Declarative extension to make it easy to define an ORM mapping using the Active
Record Pattern. This is used through the documentation and in the example code.

To use Declarative, threre are some base classes that should be imported:

from camelot.core.orm import Entity
from camelot.admin.entity_admin import EntityAdmin

from sqlalchemy import sql

3.2. Creating models 37

http://pypi.python.org/pypi/Camelot/
http://www.sqlalchemy.org
http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html

Camelot Documentation, Release

from sqlalchemy.schema import Column
import sqlalchemy.types

Those are :

• camelot.core.orm.Entity is the declarative base class provided by Camelot for all classes that are
mapped to the database, and is a subclass of camelot.core.orm.entity.EntityBase

• camelot.admin.entity_admin.EntityAdmin is the base class that describes how an Entity subclass
should be represented in the GUI

• sqlalchemy.schema.Column describes a column in the database and a field in the model

• sqlalchemy.types contains the various column types that can be used

Next a model can be defined:

class Tag(Entity):

__tablename__ = ’tags’

name = Column(sqlalchemy.types.Unicode(60), nullable = False)
movies = ManyToMany(’Movie’,

tablename = ’tags_movies__movies_tags’,
local_colname = ’movies_id’,
remote_colname = ’tags_id’)

def __unicode__(self):
return self.name

class Admin(EntityAdmin):
form_size = (400,200)
list_display = [’name’]

begin visitor report definition

The code above defines the model for a Tag class, an object with only a name that can be related to other ojbects later
on. This code has some things to notice :

• Tag is a subclass of camelot.core.orm.Entity,

• the __tablename__ class attribute allows us to specify the name of the table in the database in which the
tags will be stored.

• The sqlalchemy.schema.Column statement add fields of a certain type, in this case
sqlalchemy.types.Unicode, to the Tag class as well as to the tags table

• The __unicode__ method is implemented, this method will be called within Camelot whenever a textual
representation of the object is needed, eg in a window title or a many to one widget. It’s good practice to always
implement the __unicode__ method for all Entity subclasses.

When a new Camelot project is created, the camelot-admin tool creates an empty models.py file that can be used
as a place to start the model definition.

3.2.1 Column types

SQLAlchemy comes with a set of column types that can be used. These column types will trigger the use of a certain
QtGui.QDelegate to visualize them in the views. Camelot extends those SQLAlchemy field types with some of
its own.

38 Chapter 3. Camelot Documentation

http://docs.sqlalchemy.org/en/rel_0_8/core/schema.html#sqlalchemy.schema.Column
http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types
http://docs.sqlalchemy.org/en/rel_0_8/core/schema.html#sqlalchemy.schema.Column
http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types.Unicode

Camelot Documentation, Release

An overview of field types from SQLAlchemy and Camelot is given in the table below :

All SQLAlchemy field types can be found in the sqlalchemy.types module. All additional Camelot field types
can be found in the camelot.types module.

3.2.2 Relations

SQLAlchemy uses the relationship function to define relations between classes. This function can be used within
Camelot as well.

On top of this, Camelot provides some construct in the camelot.core.orm.relationships that make setting
up relationships a bit easier.

3.2.3 Calculated Fields

To display fields in forms that are not stored into the database but, are calculated at run time, two main options exist.
Either those fields are calculated within the database or they are calculated by Python. Normal Python properties can
be used to do the calculation in Python, whereas ColumnProperties can be used to do the logic in the database.

Python properties as fields

Normal python properties can be used as fields on forms as well. In that case, there will be no introspection to find out
how to display the property. Therefore the delegate (Specifying delegates) attribute should be specified explicitly.

import math

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

class Coordinate(object):

def __init__(self, x = 0, y = 0):
self.id = 1
self.x = x
self.y = y

@property
def r(self):

return math.sqr(self.x**2, self.y**2)

class Admin(ObjectAdmin):
form_display = [’x’, ’y’, ’r’]
field_attributes = dict(x = dict(delegate = delegates.FloatDelegate,

editable = True),
y = dict(delegate = delegates.FloatDelegate,

editable = True),
r = dict(delegate = delegates.FloatDelegate))

By default, python properties are read-only. They have to be set to editable through the field attributes to make them
writeable by the user.

Properties are also used to summarize information from multiple attributes and put them in a single field.

3.2. Creating models 39

http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types

Camelot Documentation, Release

Cascading field changes

Whenever the value of a field is changed, this change can cascade through the model by using properties to manipulate
the field instead of manipulating it directly. The example below demonstrates how the value of y should be chopped
when x is changed.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

class Coordinate(object):

def __init__(self):
self.id = 1
self.x = 0.0
self.y = 0.0

def _get_x(self):
return self.x

def _set_x(self, x):
self.x = x
self.y = max(self.y,x)

_x = property(_get_x, _set_x)

class Admin(ObjectAdmin):
form_display = [’_x’, ’y’,]
field_attributes = dict(_x=dict(delegate=delegates.FloatDelegate, name=’x’),

y=dict(delegate=delegates.FloatDelegate),)
form_size = (100,100)

doc/../_static/snippets/fields_with_actions.png

Fields calculated by the database

Having certain summary fields of your models filled by the database has the advantage that the heavy processing is
moved from the client to the server. Moreover if the summary builds on information in related records, having the
database build the summary reduces the need to transfer additional data from the database to the server.

To display fields in the table and the form view that are the result of a calculation done by the database, a
camelot.core.orm.properties.ColumnProperty needs to be defined in the Declarative model. In this
column property, the sql query can be defined using SQLAlchemy statements. In this example, the Movie class gains
the total_visitors attribute which contains the sum of all visitors that went to a movie.

@ColumnProperty
def total_visitors(self):

return sql.select([sql.func.sum(VisitorReport.visitors)],
VisitorReport.movie_id == self.id)

It’s important to notice that the value of this field is calculated when the object is fetched from the database. When
the user presses F9, all data in the application is refreshed from the database, and thus all column properties are
recalculated.

40 Chapter 3. Camelot Documentation

Camelot Documentation, Release

3.2.4 Views

Traditionally, in database land, views are queries defined at the database level that act like read-only tables. They allow
reuse of common queries across an application, and are very suitable for reporting.

Using SQLAlchemy this traditional approach can be used, but a more dynamic approach is possible as well. We can
map arbitrary queries to an object, and then visualize these objects with Camelot.

The model to start from

doc/../_static/entityviews/table_view_visitorreport.png

In the example movie project, we can take three parts of the model : Person, Movie and VisitorReport:

class Person(Party):
"""Person represents natural persons
"""
using_options(tablename = ’person’)
party_id = Field(camelot.types.PrimaryKey(),

ForeignKey(’party.id’),
primary_key = True)

__mapper_args__ = {’polymorphic_identity’: u’person’}
first_name = Field(Unicode(40), required = True)
last_name = Field(Unicode(40), required = True)

There is a relation between Person and Movie through the director attribute:

class Movie(Entity):

__tablename__ = ’movies’

title = Column(sqlalchemy.types.Unicode(60), nullable = False)
short_description = Column(sqlalchemy.types.Unicode(512))
releasedate = Column(sqlalchemy.types.Date)
genre = Column(sqlalchemy.types.Unicode(15))
rating = Column(camelot.types.Rating())
#
All relation types are covered with their own editor
#
director = ManyToOne(’Person’)
cast = OneToMany(’Cast’)
visitor_reports = OneToMany(’VisitorReport’, cascade=’delete’)
tags = ManyToMany(’Tag’,

tablename = ’tags_movies__movies_tags’,
local_colname = ’tags_id’,
remote_colname = ’movies_id’)

And a relation between Movie and VisitorReport:

class VisitorReport(Entity):

__tablename__ = ’visitor_report’

3.2. Creating models 41

Camelot Documentation, Release

date = Column(sqlalchemy.types.Date,
nullable = False,
default = datetime.date.today)

visitors = Column(sqlalchemy.types.Integer,
nullable = False,
default = 0)

movie = ManyToOne(’Movie’, required = True)

doc/../_static/entityviews/table_view_visitorreport.png

Definition of the view

Suppose, we now want to display a table with the total numbers of visitors for all movies of a director.

We first define a plain old Python class that represents the expected results :

class VisitorsPerDirector(object):

class Admin(EntityAdmin):
verbose_name = _(’Visitors per director’)
list_display = table.Table([table.ColumnGroup(_(’Name and Visitors’), [’first_name’, ’last_name’, ’visitors’]),

table.ColumnGroup(_(’Official’), [’birthdate’, ’social_security_number’, ’passport_number’])]
)

end column group

Then define a function that maps the query that calculates those results to the plain old Python object :

def setup_views():
from sqlalchemy.sql import select, func, and_
from sqlalchemy.orm import mapper

from camelot.model.party import Person
from camelot_example.model import Movie, VisitorReport

s = select([Person.party_id,
Person.first_name.label(’first_name’),
Person.last_name.label(’last_name’),
Person.birthdate.label(’birthdate’),
Person.social_security_number.label(’social_security_number’),
Person.passport_number.label(’passport_number’),
func.sum(VisitorReport.visitors).label(’visitors’),],
whereclause = and_(Person.party_id == Movie.director_party_id,

Movie.id == VisitorReport.movie_id),
group_by = [Person.party_id,

Person.first_name,
Person.last_name,
Person.birthdate,
Person.social_security_number,
Person.passport_number,])

s=s.alias(’visitors_per_director’)

mapper(VisitorsPerDirector, s, always_refresh=True)

42 Chapter 3. Camelot Documentation

Camelot Documentation, Release

Put all this in a file called view.py

Put into action

Then make sure the plain old Python object is mapped to the query, just after the Elixir model has been setup, by
modifying the setup_model function in settings.py:

def setup_model():
from sqlalchemy.orm import configure_mappers
from camelot.core.sql import metadata
metadata.bind = settings.ENGINE()
import camelot.model.party
import camelot.model.authentication
import camelot.model.i18n
import camelot.model.fixture
import camelot.model.memento
import camelot.model.batch_job
import camelot_example.model
#
create the tables for all models, configure mappers first, to make
sure all deferred properties have been handled, as those could
create tables or columns
#
configure_mappers()
metadata.create_all()
from camelot.model.authentication import update_last_login
#update_last_login()
#
Load sample data with the fixure mechanism
#
from camelot_example.fixtures import load_movie_fixtures
load_movie_fixtures()
#
setup the views
#
from camelot_example.view import setup_views
setup_views()

And add the plain old Python object to a section in the ApplicationAdmin:

def get_sections(self):

from camelot.model.batch_job import BatchJob
from camelot.model.memento import Memento
from camelot.model.party import (Person, Organization,

PartyCategory)
from camelot.model.i18n import Translation
from camelot.model.batch_job import BatchJob, BatchJobType

from camelot_example.model import Movie, Tag, VisitorReport
from camelot_example.view import VisitorsPerDirector

begin import action
from camelot_example.importer import ImportCovers

end import action

return [

3.2. Creating models 43

Camelot Documentation, Release

begin section with action
Section(_(’Movies’),

self,
Icon(’tango/22x22/mimetypes/x-office-presentation.png’),
items = [Movie,

Tag,
VisitorReport,

VisitorsPerDirector,
ImportCovers()]),

end section with action
Section(_(’Relation’),

self,
Icon(’tango/22x22/apps/system-users.png’),
items = [Person,

Organization,
PartyCategory]),

Section(_(’Configuration’),
self,
Icon(’tango/22x22/categories/preferences-system.png’),
items = [Memento,

Translation,
BatchJobType,
BatchJob
])

]

doc/../_static/entityviews/table_view_visitorsperdirector.png

3.3 Admin classes

The Admin classes are the classes that specify how objects should be visualized, they define the look, feel and be-
haviour of the Application. Most of the behaviour of the Admin classes can be tuned by changing their class attributes.
This makes it easy to subclass a default Admin class and tune it to your needs.

44 Chapter 3. Camelot Documentation

Camelot Documentation, Release

3.3.1 ObjectAdmin

Camelot is able to visualize any Python object, through the use of the
camelot.admin.object_admin.ObjectAdmin class. However, subclasses exist that use introspection
to facilitate the visualisation.

Each class that is visualized within Camelot has an associated Admin class which specifies how the object or a list of
objects should be visualized.

Usually the Admin class is bound to the model class by defining it as an inner class of the model class:

class Options(object):
"""A python object in which we store the change in rating
"""

def __init__(self):
self.only_selected = True
self.change = 1

Since Options is a plain old python object, we cannot
use an EntityAdmin, and should use the ObjectAdmin
class Admin(ObjectAdmin):

verbose_name = _(’Change rating options’)
form_display = [’change’, ’only_selected’]
form_size = (100, 100)
Since there is no introspection, the delegate should
be specified explicitely, and set to editable
field_attributes = {’only_selected’:{’delegate’:delegates.BoolDelegate,

’editable’:True},
’change’:{’delegate’:delegates.IntegerDelegate,

3.3. Admin classes 45

Camelot Documentation, Release

’editable’:True},
}

begin change rating action definition

Most of the behaviour of the Admin class can be customized by changing the class attributes like verbose_name,
list_display and form_display.

Other Admin classes can inherit ObjectAdmin if they want to provide additional functionallity, like introspection to set
default field attributes.

3.3.2 EntityAdmin

The camelot.admin.entity_admin.EntityAdmin class is a subclass of ObjectAdmin that can be used to
visualize objects mapped to a database using SQLAlchemy.

The EntityAdmin uses introspection of the model to guess the default field attributes. This makes the definition of an
Admin class less verbose.

class Tag(Entity):

__tablename__ = ’tags’

name = Column(sqlalchemy.types.Unicode(60), nullable = False)
movies = ManyToMany(’Movie’,

tablename = ’tags_movies__movies_tags’,
local_colname = ’movies_id’,
remote_colname = ’tags_id’)

def __unicode__(self):
return self.name

class Admin(EntityAdmin):
form_size = (400,200)
list_display = [’name’]

begin visitor report definition

The camelot.admin.entity_admin.EntityAdmin provides some additonal attributes on top of those pro-
vided by camelot.admin.object_admin.ObjectAdmin, such as list_filter and list_search

46 Chapter 3. Camelot Documentation

Camelot Documentation, Release

3.3.3 Others

Field Attributes

Field attributes are the most convenient way to customize an application, they can be specified through the
field_attributes dictionary of an Admin class :

class VisitorReport(Entity):

__tablename__ = ’visitor_report’

date = Column(sqlalchemy.types.Date,
nullable = False,
default = datetime.date.today)

visitors = Column(sqlalchemy.types.Integer,
nullable = False,
default = 0)

movie = ManyToOne(’Movie’, required = True)
end visitor report definition

class Admin(EntityAdmin):
verbose_name = _(’Visitor Report’)
list_display = [’movie’, ’date’, ’visitors’]
field_attributes = {’visitors’:{’minimum’:0}}

Each combination of a delegate and an editor used to handle a field supports a different set of field attributes. To know
which field attribute is supported by which editor or delegate, have a look at the Delegates documentation.

Static Field Attributes

Static field attributes should be the same for every row in the same column, as such they should be specified as constant
in the field attributes dictionary.

Dynamic Field Attributes

Some field attributes, like background_color, can be dynamic. This means they can be specified as a function in the
field attributes dictionary.

3.3. Admin classes 47

Camelot Documentation, Release

This function should take as its single argument the object on which the field attribute applies, as can be seen in the
background color example

These are the field attributes that can be dynamic:

Overview of the field attributes

address_validator A function that verifies if a virtual address is valid, and eventually corrects it. The default imple-
mentation can is camelot.view.controls.editors.virtualaddresseditor.default_address_validator()

This function will be called while the user is editing the address, therefor it should take very little time to do the
validation. If the address is invalid, this will be shown to the user, but it will not block the input of the address.

calculator True or False Indicates whether a calculator should be available when editing this field.

create_inline used in a one to many relation, if False, then a new entity will be created within a new window, if
True, it will be created as a new line in the table.

column_width An integer forcing the column width of a field in a table view. The use of this field attribute is
not recommended, since in most cases Camelot will figure out how wide a column should be. The use of mini-
mal_column_width is advised to make sure a column has a certain width. But the column_width field attribute can be
used to shrink the column width to arbitrary sizes, even if this might make the header unreadeable.

field_attributes = { ’first_name’:{’column_width’:8},
’suffix’:{’column_width’:8},}

_static/controls/column_width.png

directory True or False indicates if the file editor should point to a directory instead of a file. By default it points
to a file.

editable True or False

Indicates whether the user can edit the field.

field_name This is the object name of the QtGui.QWidget that will be used as an editor for this field.

file_filter When the user is able to select a file or filename, use this filter to limit the available files.

length The maximum number of characters that can be entered in a text field.

minimum The minimum allowed value for Integer and Float delegates or their related delegates like the Star
delegate.

48 Chapter 3. Camelot Documentation

Camelot Documentation, Release

maximum The maximum allowed value for Integer and Float delegates or their related delegates like the Star
delegate.

precision The numerical precision that will be used to display Float values, this is unrelated to the precision in
which they are stored.

choices A function taking as a single argument the object to which the field belongs. The function returns a list of
tuples containing for each possible choice the value to be stored on the model and the value displayed to the user.

The use of choices forces the use of the ComboBox delegate:

field_attributes = {’state’:{’choices’:lambda o:[(1, ’Active’),
(2, ’Passive’)]}}

minimal_column_width An integer specifying the minimal column width when this field is displayed in a table
view. The width is expressed as the number of characters that should fit in the column:

field_attributes = {’name’:{’minimal_column_width’:50}}

will make the column wide enough to display at least 50 characters. The user will still be able to reduce the column
size manually.

prefix String to display before a number

remove_original True or False

Set to True when a file should be deleted after it has been transfered to the storage.

single_step The size of a single step when the up and down arrows are used in on a float or an integer field.

suffix String to display after a number

tooltip A function taking as a single argument the object to which the field belongs. The function should return a
string that will be used as a tooltip. The string may contain html markup.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

def dynamic_tooltip_x(coordinate):
return u’The x value of the coordinate, now set to %s’%(coordinate.x)

def dynamic_tooltip_y(coordinate):
return u’The y value of the coordinate, now set to %s’%(coordinate.y)

class Coordinate(object):

def __init__(self):
self.id = 1
self.x = 0.0
self.y = 0.0

class Admin(ObjectAdmin):

3.3. Admin classes 49

Camelot Documentation, Release

form_display = [’x’, ’y’,]
field_attributes = dict(x=dict(delegate=delegates.FloatDelegate,

tooltip=dynamic_tooltip_x),
y=dict(delegate=delegates.FloatDelegate,

tooltip=dynamic_tooltip_y),
)

form_size = (100,100)

doc/../_static/snippets/fields_with_tooltips.png

translate_content True or False

Wether the content of a field should be translated before displaying it. This only works for displaying content, not
while editing it.

background_color A function taking as a single argument the object to which the field belongs. The function should
return None if the default background should be used, or a QColor to be used as the background.

"""This Admin class turns the background of a Person’s first
name pink if its first name doesn’t start with a capital"""

from PyQt4.QtGui import QColor

from camelot.model.party import Person

def first_name_background_color(person):
import string
if person.first_name:

if person.first_name[0] not in string.uppercase:
return QColor(’pink’)

class Admin(Person.Admin):
field_attributes = {’first_name’:{’background_color’:first_name_background_color}}

doc/../_static/snippets/background_color.png

name The name of the field used, this defaults to the name of the attribute

target In case of relation fields, specifies the class that is at the other end of the relation. Defaults to the one found by
introspection. This can be used to let a many2one editor always point to a subclass of the one found by introspection.

50 Chapter 3. Camelot Documentation

Camelot Documentation, Release

admin In case of relation fields, specifies the admin class that is to be used to visualize the other end of the relation.
Defaults to the default admin class of the target class. This can be used to make the table view within a one2many
widget look different from the default table view for the same object.

address_type Should be None or one of the Virtual Address Types, like ‘phone’ or ‘email’. When specified, it
indicates that a VirtualAddressEditor should only accept addresses of the specified type.

Customizing multiple field attributes

When multiple field attributes need to be customized, specifying the field_attributes dictionary can become inefficient.

Several methods of the camelot.admin.object_admin.ObjectAdmin class can be overwritten to take care
of this.

Instead of filling the field_attributes dictionary manually, the :method:‘camelot.admin.object_admin.ObjectAdmin.get_field_attributes‘
method can be overwritten :

When multiple dynamic field attributes need to execute the same logic to determine their value, it can be more efficient
to overwrite the method :method:‘camelot.admin.object_admin.ObjectAdmin.get_dynamic_field_attributes‘ and
execute the logic once there and set the value for all dynamic field attributes at once.

The complement of get_dynamic_field_attributes is :method:‘camelot.admin.object_admin.ObjectAdmin.get_static_field_attributes‘.

Validators

Before an object is written to the database it needs to be validated, and the user needs to be informed in case the object
is not valid.

By default Camelot does some introspection on the model to check the validity of an object, to make sure it will be
able to write the object to the database.

But this might not be enough. If more validation is needed, a custom Validator class can be defined. The default
camelot.admin.validator.entity_validator.EntityValidator can be subclassed to create a cus-
tom validator. The new class should then be bound to the Admin class :

from camelot.admin.validator.entity_validator import EntityValidator
from camelot.admin.entity_admin import EntityAdmin

class PersonValidator(EntityValidator):

def objectValidity(self, entity_instance):
messages = super(PersonValidator,self).objectValidity(entity_instance)
if (not entity_instance.first_name) or (len(entity_instance.first_name) < 3):

messages.append("A person’s first name should be at least 2 characters long")
return messages

class Admin(EntityAdmin):
verbose_name = ’Person’
list_display = [’first_name’, ’last_name’]
validator = PersonValidator

Its most important method is objectValidity, which takes an object as argument and should return a list of strings
explaining why the object is invalid. These strings will then be presented to the user.

Notice that this method will always get called outside of the GUI thread, so the call will never block the GUI.

When the user tries to leave a form in an invalid state, a platform dependent dialog box will appear.

3.3. Admin classes 51

Camelot Documentation, Release

doc/../_static/snippets/entity_validator.png

3.4 Customizing the Application

The ApplicationAdmin controls how the application behaves, it determines the sections in the left pane, the availabil-
ity of help, the about box, the menu structure, etc.

3.4.1 The Application Admin

Each Camelot application should subclass camelot.admin.application_admin.ApplicationAdmin
and overwrite some of its methods.

The look of the main window

Most of these methods are based on the concept of Actions.

• camelot.admin.application_admin.ApplicationAdmin.get_sections()

• camelot.admin.application_admin.ApplicationAdmin.get_actions()

• camelot.admin.application_admin.ApplicationAdmin.get_toolbar_actions()

• camelot.admin.application_admin.ApplicationAdmin.get_main_menu()

Interaction with the Operating System

• camelot.admin.application_admin.ApplicationAdmin.get_organization_name()

• camelot.admin.application_admin.ApplicationAdmin.get_organization_domain()

• camelot.admin.application_admin.ApplicationAdmin.get_name()

• camelot.admin.application_admin.ApplicationAdmin.get_version()

The look of the application

• camelot.admin.application_admin.ApplicationAdmin.get_splashscreen()

• camelot.admin.application_admin.ApplicationAdmin.get_stylesheet()

• camelot.admin.application_admin.ApplicationAdmin.get_translator()

• camelot.admin.application_admin.ApplicationAdmin.get_icon()

The content of the help menu

• camelot.admin.application_admin.ApplicationAdmin.get_about()

• camelot.admin.application_admin.ApplicationAdmin.get_help_url()

52 Chapter 3. Camelot Documentation

Camelot Documentation, Release

Default behavior of the application

• camelot.admin.application_admin.ApplicationAdmin.get_related_admin()

The look of the form views

• camelot.admin.application_admin.ApplicationAdmin.get_related_toolbar_actions()

• camelot.admin.application_admin.ApplicationAdmin.get_form_actions()

• camelot.admin.application_admin.ApplicationAdmin.get_form_toolbar_actions()

Example

class MyApplicationAdmin(ApplicationAdmin):

name = ’Camelot Video Store’

begin sections
def get_sections(self):

from camelot.model.batch_job import BatchJob
from camelot.model.memento import Memento
from camelot.model.party import (Person, Organization,

PartyCategory)
from camelot.model.i18n import Translation
from camelot.model.batch_job import BatchJob, BatchJobType

from camelot_example.model import Movie, Tag, VisitorReport
from camelot_example.view import VisitorsPerDirector

begin import action
from camelot_example.importer import ImportCovers

end import action

return [
begin section with action

Section(_(’Movies’),
self,
Icon(’tango/22x22/mimetypes/x-office-presentation.png’),
items = [Movie,

Tag,
VisitorReport,

VisitorsPerDirector,
ImportCovers()]),

end section with action
Section(_(’Relation’),

self,
Icon(’tango/22x22/apps/system-users.png’),
items = [Person,

Organization,
PartyCategory]),

Section(_(’Configuration’),
self,
Icon(’tango/22x22/categories/preferences-system.png’),
items = [Memento,

Translation,
BatchJobType,

3.4. Customizing the Application 53

Camelot Documentation, Release

BatchJob
])

]
end sections

begin actions
def get_actions(self):

from camelot.admin.action import OpenNewView
from camelot_example.model import Movie

new_movie_action = OpenNewView(self.get_related_admin(Movie))
new_movie_action.icon = Icon(’tango/22x22/mimetypes/x-office-presentation.png’)

return [new_movie_action]
end actions

3.4.2 Example of a reduced application

By reimplementing the default get_sections(), get_main_menu() and get_toolbar_actions(), it is
possible to create a completely differently looking Camelot application.

_static/controls/reduced_main_window.png

def get_toolbar_actions(self, toolbar_area):
from PyQt4.QtCore import Qt
from camelot.model.party import Person
from camelot.admin.action import application_action, list_action
from model import Movie

movies_action = application_action.OpenTableView(self.get_related_admin(Movie))
movies_action.icon = Icon(’tango/22x22/mimetypes/x-office-presentation.png’)
persons_action = application_action.OpenTableView(self.get_related_admin(Person))
persons_action.icon = Icon(’tango/22x22/apps/system-users.png’)

if toolbar_area == Qt.LeftToolBarArea:
return [movies_action,

persons_action,
list_action.OpenNewView(),
list_action.OpenFormView(),
list_action.DeleteSelection(),
application_action.Exit(),]

def get_actions(self):
return []

def get_sections(self):
return None

def get_main_menu(self):
return None

54 Chapter 3. Camelot Documentation

Camelot Documentation, Release

def get_stylesheet(self):
from camelot.view import art
return art.read(’stylesheet/black.qss’)

3.5 Creating Forms

This section describes how to place fields on forms and applying various layouts. It also covers how to customize
forms to your specific needs. As with everything in Camelot, the goal of the framework is that you can create 80%
of your forms with minimal effort, while the framework should allow you to really customize the other 20% of your
forms.

3.5.1 Form

A form is a collection of fields organized within a layout. Each field is represented by its editor.

Usually forms are defined by specifying the form_display attribute of an Admin class :

from sqlalchemy.schema import Column
from sqlalchemy.types import Unicode, Date
from camelot.admin.entity_admin import EntityAdmin
from camelot.core.orm import Entity
from camelot.view import forms

class Movie(Entity):
title = Column(Unicode(60), nullable=False)
short_description = Column(Unicode(512))
releasedate = Column(Date)

class Admin(EntityAdmin):
form_display = forms.Form([’title’, ’short_description’, ’releasedate’])

doc/../_static/form/form.png

The form_display attribute should either be a list of fields to display or an instance of camelot.view.forms.Form or its
subclasses.

Forms can be nested into each other :

from camelot.admin.entity_admin import EntityAdmin
from camelot.view import forms
from camelot.core.utils import ugettext_lazy as _

class Admin(EntityAdmin):
verbose_name = _(’person’)
verbose_name_plural = _(’persons’)
list_display = [’first_name’, ’last_name’,]
form_display = forms.TabForm([(’Basic’, forms.Form([’first_name’, ’last_name’, ’contact_mechanisms’,])),

(’Official’, forms.Form([’birthdate’, ’social_security_number’, ’passport_number’,
’passport_expiry_date’,’addresses’,])),])

3.5. Creating Forms 55

Camelot Documentation, Release

doc/../_static/form/nested_form.png

3.5.2 Inheritance and Forms

Just as Entities support inheritance, forms support inheritance as well. This avoids duplication of effort when designing
and maintaining forms. Each of the Form subclasses has a set of methods to modify its content. In the example below
a new tab is added to the form defined in the previous section.

from copy import deepcopy

from camelot.view import forms
from nested_form import Admin

class InheritedAdmin(Admin):
form_display = deepcopy(Admin.form_display)
form_display.add_tab(’Work’, forms.Form([’employers’, ’directed_organizations’, ’shares’]))

doc/../_static/form/inherited_form.png

3.5.3 Putting notes on forms

doc/../_static/editors/NoteEditor.png

A note on a form is nothing more than a property with the NoteDelegate as its delegate and where the widget is inside
a WidgetOnlyForm.

In the case of a Person, we display a note if another person with the same name already exists :

def note(self):
for person in self.__class__.query.filter_by(first_name=self.first_name, last_name=self.last_name):

if person != self:
return _(’A person with the same name already exists’)

3.5.4 Available Form Subclasses

The camelot.view.forms.Form class has several subclasses that can be used to create various layouts. Those
can be found in the camelot.view.forms module. Each subclass maps to a Qt Layout class.

56 Chapter 3. Camelot Documentation

Camelot Documentation, Release

3.5.5 Customizing Forms

Several options exist for completely customizing the forms of an application.

Layout

When the desired layout cannot be achieved with Camelot’s form classes, a custom camelot.view.forms.Form
subclass can be made to layout the widgets.

When subclassing the Form class, it’s render method should be reimplemented to put the labels and the editors in a
custom layout. The render method will be called by Camelot each time it needs the form. It should thus return a
QtGui.QWidget to be used as the needed form.

The render method its first argument is the factory class camelot.view.controls.formview.FormEditors,
through which editors and labels can be constructed. The editor widgets are bound to the data model.

from PyQt4 import QtGui

from camelot.view import forms
from camelot.admin.entity_admin import EntityAdmin

class CustomForm(forms.Form):

def __init__(self):
super(CustomForm, self).__init__([’first_name’, ’last_name’])

def render(self, editor_factory, parent = None, nomargins = False):
widget = QtGui.QWidget(parent)
layout = QtGui.QFormLayout()
layout.addRow(QtGui.QLabel(’Please fill in the complete name :’, widget))
for field_name in self.get_fields():

field_editor = editor_factory.create_editor(field_name, widget)
field_label = editor_factory.create_label(field_name, field_editor, widget)
layout.addRow(field_label, field_editor)

widget.setLayout(layout)
widget.setBackgroundRole(QtGui.QPalette.ToolTipBase)
widget.setAutoFillBackground(True)
return widget

class Admin(EntityAdmin):
list_display = [’first_name’, ’last_name’]
form_display = CustomForm()
form_size = (300,100)

The form defined above puts the widgets into a QtGui.QFormLayout using a different background color, and adds
some instructions for the user :

doc/../_static/form/custom_layout.png

3.5. Creating Forms 57

Camelot Documentation, Release

Editors

The editor of a specific field can be changed, by specifying an alternative QtGui.QItemDelegate for that field,
using the delegate field attributes, see Specifying delegates.

Tooltips

Each field on the form can be given a dynamic tooltip, using the tooltip field attribute, see tooltip.

Buttons

Buttons bound to a specific action can be put on a form, using the form_actions attribute, attribute of the Admin class
: Form Actions.

Validation

Validation is done at the object level. Before a form is closed validation of the bound object takes place, an invalid
object will prevent closing the form. A custom validator can be defined : Validators

3.6 Actions

3.6.1 Introduction

Besides displaying and editing data, every application needs the functions to manipulate data or create reports. In
Camelot this is done through actions. Actions can appear as buttons on the side of a form or a table, as icons in a
toolbar or as icons in the home workspace.

_static/entityviews/new_view_address.png

Every Action is build up with a set of Action Steps. An Action Step is a reusable part of an Action, such as for
example, ask the user to select a file. Camelot comes with a set of standard Actions and Action Steps that are easily
extended to manipulate data or create reports.

When defining Actions, a clear distinction should be made between things happening in the model thread (the manipu-
lation or querying of data), and things happening in the gui thread (pop up windows or reports). The The Two Threads
section gives more detail on this.

3.6.2 Summary

In general, actions are defined by subclassing the standard Camelot camelot.admin.action.Action class

from camelot.admin.action import Action
from camelot.view.action_steps import PrintHtml
from camelot.core.utils import ugettext_lazy as _
from camelot.view.art import Icon

58 Chapter 3. Camelot Documentation

Camelot Documentation, Release

class PrintReport(Action):

verbose_name = _(’Print Report’)
icon = Icon(’tango/16x16/actions/document-print.png’)
tooltip = _(’Print a report with all the movies’)

def model_run(self, model_context):
yield PrintHtml(’Hello World’)

Each action has two methods, gui_run() and model_run(), one of them should be reimplemented in the subclass
to either run the action in the gui thread or to run the action in the model thread. The default Action.gui_run()
behavior is to pop-up a ProgressDialog dialog and start the model_run() method in the model thread.

model_run() in itself is a generator, that can yield ActionStep objects back to the gui, such as a PrintHtml.

The action objects can than be used a an element of the actions list returned by the
ApplicationAdmin.get_actions() method:

def get_actions(self):
from camelot.admin.action import OpenNewView
from camelot_example.model import Movie

new_movie_action = OpenNewView(self.get_related_admin(Movie))
new_movie_action.icon = Icon(’tango/22x22/mimetypes/x-office-presentation.png’)

return [new_movie_action]

or be used in the ObjectAdmin.list_actions or ObjectAdmin.form_actions attributes.

The Add an import wizard to an application tutorial has a complete example of creating and using and action.

3.6.3 What can happen inside model_run()

yield events to the GUI

Actions need to be able to send their results back to the user, or ask the user for additional information. This is done
with the yield statement.

Through yield, an Action Step is send to the GUI thread, where it creates user interaction, and sends it result back
to the ‘model_thread’. The model_thread will be blocked while the action in the GUI thread takes place, eg

yield PrintHtml(’Hello World’)

Will pop up a print preview dialog in the GUI, and the model_run method will only continue when this dialog is closed.

Events that can be yielded to the GUI should be of type camelot.admin.action.base.ActionStep. Action
steps are reusable parts of an action. Possible Action Steps that can be yielded to the GUI include:

• camelot.view.action_steps.change_object.ChangeObject

• camelot.view.action_steps.change_object.ChangeObjects

• camelot.view.action_steps.print_preview.PrintChart

• camelot.view.action_steps.print_preview.PrintPreview

• camelot.view.action_steps.print_preview.PrintHtml

• camelot.view.action_steps.print_preview.PrintJinjaTemplate

• camelot.view.action_steps.open_file.OpenFile

3.6. Actions 59

http://docs.python.org/dev/reference/simple_stmts.html#yield
http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

• camelot.view.action_steps.open_file.OpenStream

• camelot.view.action_steps.open_file.OpenJinjaTemplate

• camelot.view.action_steps.gui.CloseView

• camelot.view.action_steps.gui.MessageBox

• camelot.view.action_steps.gui.Refresh

• camelot.view.action_steps.gui.OpenFormView

• camelot.view.action_steps.gui.ShowPixmap

• camelot.view.action_steps.gui.ShowChart

• camelot.view.action_steps.select_file.SelectFile

• camelot.view.action_steps.select_object.SelectObject

keep the user informed about progress

An camelot.view.action_steps.update_progress.UpdateProgress object can be yielded, to up-
date the state of the progress dialog:

This should be done regulary to keep the user informed about the progres of the action:

movie_count = Movie.query.count()

report = ’<table>’
for i, movie in enumerate(Movie.query.all()):

report += ’<tr><td>%s</td></tr>’%(movie.name)
yield UpdateProgress(i, movie_count)

report += ’</table>’

yield PrintHtml(report)

Should the user have pressed the Cancel button in the progress dialog, the next yield of an UpdateProgress object will
raise a camelot.core.exception.CancelRequest.

manipulation of the model

The most important purpose of an action is to query or manipulate the model, all such things can be done in the
model_run() method, such as executing queries, manipulating files, etc.

Whenever a part of the model has been changed, it might be needed to inform the GUI about
this, so that it can update itself, the easy way of doing so is by yielding an instance of
camelot.view.action_steps.orm.FlushSession such as:

movie.rating = 5
yield FlushSession(model_context.session)

This will flush the session to the database, and at the same time update the GUI so that the flushed changes are shown
to the user by updating the visualisation of the changed movie on every screen in the application that displays this
object. Alternative updates that can be generated are :

• camelot.view.action_steps.orm.UpdateObject, if one wants to inform the GUI an object has
been updated.

• camelot.view.action_steps.orm.DeleteObject, if one wants to inform the GUI an object is go-
ing to be deleted.

60 Chapter 3. Camelot Documentation

Camelot Documentation, Release

• camelot.view.action_steps.orm.CreateObject, if one wants to inform the GUI an object has
been created.

raise exceptions

When an action fails, a normal Python Exception can be raised, which will pop-up an exception dialog to
the user that displays a stack trace of the exception. In case no stack trace should be shown to the user, a
camelot.core.exception.UserException should be raised. This will popup a friendly dialog :

_static/controls/user_exception.png

When the model_run() method raises a camelot.core.exception.CancelRequest, a
GeneratorExit or a StopIteration exception, these are ignored and nothing will be shown to the
user.

handle exceptions

In case an unexpected event occurs in the GUI, a yield statement will raise a
camelot.core.exception.GuiException. This exception will propagate through the action an will
be ignored unless handled by the developer.

request information from the user

The pop-up of a dialog that presents the user with a number of options can be triggered from within the model_run()
method. This happens by transferring an options object back and forth between the model_thread and the gui_thread.
To transfer such an object, this object first needs to be defined:

class Options(object):

def __init__(self):
self.earliest_releasedate = datetime.date(2000, 1, 1)
self.latest_releasedate = datetime.date.today()

class Admin(ObjectAdmin):
form_display = [’earliest_releasedate’, ’latest_releasedate’]
field_attributes = { ’earliest_releasedate’:{’delegate’:delegates.DateDelegate},

’latest_releasedate’:{’delegate’:delegates.DateDelegate}, }

Than a camelot.view.action_steps.change_object.ChangeObject action step can be yield to
present the options to the user and get the filled in values back :

from PyQt4 import QtGui
from camelot.view import action_steps
options = NewProjectOptions()
yield action_steps.UpdateProgress(text = ’Request information’)
yield action_steps.ChangeObject(options)

Will show a dialog to modify the object:

3.6. Actions 61

http://docs.python.org/dev/reference/simple_stmts.html#yield
http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

_static/actionsteps/change_object.png

When the user presses Cancel button of the dialog, the yield statement will raise a
camelot.core.exception.CancelRequest.

Other ways of requesting information are :

• camelot.view.action_steps.select_file.SelectFile, to request to select an existing file to
process or a new file to save information.

Issue SQLAlchemy statements

Camelot itself only manipulates the database through objects of the ORM for the sake of make no difference between
objects mapped to the database and plain old python objects. But for performance reasons, it is often desired to do
manipulations directly through SQLAlchemy ORM or Core queries :

model_context.session.query(BatchJobType).update(values = {’name’:’accounting audit’},
synchronize_session = ’evaluate’)

3.6.4 States and Modes

States

The widget that is used to trigger an action can be in different states. A camelot.admin.action.base.State
object is returned by the camelot.admin.action.base.Action.get_statemethod. Subclasses of Action
can reimplement this method to change the State of an action button.

This allows to hide or disable the action button, depending on the objects selected or the current object being displayed.

Modes

An action widget can be triggered in different modes, for example a print button can be triggered as Print or Export to
PDF. The different modes of an action are specified as a list of camelot.admin.action.base.Mode objects.

To change the modes of an Action, either specify the modes attribute of an Action or specify the modes attribute
of the State returned by the Action.get_state() method.

3.6.5 Action Context

Depending on where an action was triggered, a different context will be available
during its execution in camelot.admin.action.base.Action.gui_run() and
camelot.admin.action.base.Action.model_run().

The minimal context available in the GUI thread when gui_run() is called :

While the minimal contact available in the Model thread when model_run() is called :

62 Chapter 3. Camelot Documentation

http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

Application Actions

To enable Application Actions for a certain ApplicationAdmin overwrite its
ApplicationAdmin.get_actions() method:

from camelot.admin.application_admin import ApplicationAdmin
from camelot.admin.action import Action

class GenerateReports(Action):

verbose_name = _(’Generate Reports’)

def model_run(self, model_context):
for i in range(10):

yield UpdateProgress(i, 10)

class MyApplicationAdmin(ApplicationAdmin)

def get_actions(self):
return [GenerateReports(),]

An action specified here will receive an ApplicationActionGuiContext object as the gui_context argument of
the the gui_run() method, and a ApplicationActionModelContext object as the model_context argument
of the model_run() method.

Form Actions

A form action has access to the object currently visible on the form.

class BurnToDisk(Action):

verbose_name = _(’Burn to disk’)

def model_run(self, model_context):
yield action_steps.UpdateProgress(0, 3, _(’Formatting disk’))
time.sleep(0.7)
yield action_steps.UpdateProgress(1, 3, _(’Burning movie’))
time.sleep(0.7)
yield action_steps.UpdateProgress(2, 3, _(’Finishing’))
time.sleep(0.5)

To enable Form Actions for a certain ObjectAdmin or EntityAdmin, specify the form_actions attribute.

#
create a list of actions available for the user on the form view
#
form_actions = [BurnToDisk()]

_static/entityviews/new_view_movie.png

An action specified here will receive a FormActionGuiContext object as the gui_context argument of
the gui_run() method, and a FormActionModelContext object as the model_context argument of the
model_run() method.

3.6. Actions 63

Camelot Documentation, Release

List Actions

A list action has access to both all the rows displayed in the table (called the collection) and the rows selected by the
user (called the selection) :

class ChangeRatingAction(Action):
"""Action to print a list of movies"""

verbose_name = _(’Change Rating’)

def model_run(self, model_context):
#
the model_run generator method yields various ActionSteps
#
options = Options()
yield ChangeObject(options)
if options.only_selected:

iterator = model_context.get_selection()
else:

iterator = model_context.get_collection()
for movie in iterator:

yield UpdateProgress(text = u’Change %s’%unicode(movie))
movie.rating = min(5, max(0, (movie.rating or 0) + options.change))

#
FlushSession will write the changes to the database and inform
the GUI
#
yield FlushSession(model_context.session)

To enable List Actions for a certain ObjectAdmin or EntityAdmin, specify the list_actions attribute:

#
the action buttons that should be available in the list view
#
list_actions = [ChangeRatingAction()]

This will result in a button being displayed on the table view.

_static/entityviews/table_view_movie.png

An action specified here will receive a ListActionGuiContext object as the gui_context argument of th
the gui_run() method, and a ListActionModelContext object as the model_context argument of the
model_run() method.

Reusing List and Form actions

There is no need to define a different action subclass for form and list actions, as both their model_context have a
get_selection method, a single action can be used both for the list and the form.

64 Chapter 3. Camelot Documentation

Camelot Documentation, Release

3.6.6 Available actions

Camelot has a set of available actions that combine the various ActionStep subclasses. Those actions can be used
directly or as an inspiration to build new actions:

• camelot.admin.action.application_action.OpenNewView

• camelot.admin.action.application_action.OpenTableView

• camelot.admin.action.application_action.ShowHelp

• camelot.admin.action.application_action.ShowAbout

• camelot.admin.action.application_action.Backup

• camelot.admin.action.application_action.Restore

• camelot.admin.action.application_action.Refresh

• camelot.admin.action.form_action.CloseForm

• camelot.admin.action.list_action.CallMethod

• camelot.admin.action.list_action.OpenFormView

• camelot.admin.action.list_action.OpenNewView

• camelot.admin.action.list_action.ToPreviousRow

• camelot.admin.action.list_action.ToNextRow

• camelot.admin.action.list_action.ToFirstRow

• camelot.admin.action.list_action.ToLastRow

• camelot.admin.action.list_action.ExportSpreadsheet

• camelot.admin.action.list_action.PrintPreview

• camelot.admin.action.list_action.SelectAll

• camelot.admin.action.list_action.ImportFromFile

• camelot.admin.action.list_action.ReplaceFieldContents

3.6.7 Inspiration

• Implementing actions as generators was made possible with the language functions of PEP 342.

• The EuroPython talk of Erik Groeneveld inspired the use of these features.
(http://ep2011.europython.eu/conference/talks/beyond-python-enhanched-generators)

• Action steps were introduced to be able to take advantage of the new language features of PEP 380 in Python
3.3

3.7 Documents and Reports

3.7.1 Generate documents

Generating reports and documents is an important part of any application. Python and Qt provide various ways to
generate documents. Each of them with its own advantages and disadvantages.

3.7. Documents and Reports 65

http://www.python.org/dev/peps/pep-0342
http://ep2011.europython.eu/conference/talks/beyond-python-enhanched-generators
http://www.python.org/dev/peps/pep-0380

Camelot Documentation, Release

Method Advantages Disadvantages
PDF documents through report-
lab • Perfect control over layout

• Excellent for mass creation
of documents

• Relatively steep learning
curve

• User cannot edit document

HTML
• Easy to get started
• Print preview within

Camelot
• No dependencies

• Not much layout control
• User cannot edit document

Docx Word documents
• User can edit document • Proprietary format

• Word processor needed

Camelot leaves all options open to the developer.

Please have a look at Creating a Report with Camelot to get started with generating documents.

Generating a document or report is nothing more than yielding the appropriate action step during the model_run()
method of an Action.

Action steps usable for reporting are :

• camelot.view.action_steps.print_preview.PrintPreview

• camelot.view.action_steps.print_preview.PrintHtml

• camelot.view.action_steps.print_preview.PrintJinjaTemplate

• camelot.view.action_steps.open_file.OpenFile

• camelot.view.action_steps.open_file.OpenStream

• camelot.view.action_steps.open_file.OpenJinjaTemplate

3.7.2 HTML based documents

class MovieSummary(Action):

verbose_name = _(’Summary’)

def model_run(self, model_context):
from camelot.view.action_steps import PrintHtml
movie = model_context.get_object()
yield PrintHtml("<h1>This will become the movie report of %s!</h1>" % movie.title)

The supported html subset is documented here :

http://doc.qt.nokia.com/stable/richtext-html-subset.html

Alternative rendering

Instead of QtGui.QTextDocument another html renderer such as QtWebKit.QWebView can be used in
combination with the camelot.view.action_steps.print_preview.PrintPreview action step. The
QWebView class has complete support for html and css.

66 Chapter 3. Camelot Documentation

http://doc.qt.nokia.com/stable/richtext-html-subset.html

Camelot Documentation, Release

class WebkitPrint(Action):

def model_run(self, model_context):
from PyQt4.QtWebKit import QWebView
from camelot.view.action_steps import PrintPreview

movie = model_context.get_object()

document = QWebView()
document.setHtml(’<h2>%s</h2>’ % movie.title)

yield PrintPreview(document)

3.7.3 Docx based documents

Create a template document with MS Office

Create a document using MS Office and with some placeholder text on places where you want to insert data.

And save it as an xml file :

3.7. Documents and Reports 67

Camelot Documentation, Release

Clean the XML generated by MS Office

The XML file generated by MS Office can be cleaned using xmllint:

xmllint --format template.xml > template_clean.xml

Replace the placeholders

The template will be merged with the objects in the selection using jinja, where the object in the selection will be
available as a variable named obj and the time of merging the document is available as now:

3.8 Delegates

Delegates are a cornerstone of the Qt model/delegate/view framework. A delegate is used to display and edit data from
a model.

In the Camelot framework, every field of an Entity has an associated delegate that specifies how the field will be
displayed and edited. When a new form or table is constructed, the delegates of all fields on the form or table will

68 Chapter 3. Camelot Documentation

Camelot Documentation, Release

construct editors for their fields and fill them with data from the model. When the data has been edited in the form,
the delegates will take care of updating the model with the new data.

All Camelot delegates are subclasses of QtGui.QAbstractItemDelegate.

The Qt website provides detailed information the differenct classes involved in the model/delegate/view framework.

3.8.1 Specifying delegates

The use of a specific delegate can be forced by using the delegate field attribute. Suppose rating is a field of
type integer, then it can be forced to be visualized as stars:

from camelot.view.controls import delegates

class Movie(Entity):
title = Column(Unicode(50))
rating = Column(Integer)

class Admin(EntityAdmin):
list_display = [’title’, ’rating’]
field_attributes = {’rating’:{’delegate’:delegates.StarDelegate}}

The above code will result in:

doc/../_static/editors/StarEditor_editable.png

If no delegate field attribute is given, a default one will be taken depending on the sqlalchemy field type.

All available delegates can be found in camelot.view.controls.delegates

3.9 Charts

To enable charts, Camelot is closely integrate with Matplotlib, one of the very high quality Python charting packages.

Often creating a chart involves gathering a lot of data, this needs to happen inside the model, to free the GUI from
such tasks. Once the data is gathered, it is put into a container, this container is then shipped to the gui thread, where
the chart is put on the screen.

doc/../_static/editors/ChartEditor_editable.png

3.9.1 A simple plot

As shown in the example below, creating a simple plot involves two things :

1. Create a property that returns one of the chart containers, in this case the PlotContainer is used.

3.9. Charts 69

http://www.qt-project.org
http://www.matplotlib.org

Camelot Documentation, Release

2. Specify the delegate to be used to visualize the property, this should be the ChartDelegate

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates
from camelot.container.chartcontainer import PlotContainer

class Wave(object):

def __init__(self):
self.amplitude = 1
self.phase = 0

@property
def chart(self):

import math
x_data = [x/100.0 for x in range(1, 700, 1)]
y_data = [self.amplitude * math.sin(x - self.phase) for x in x_data]
return PlotContainer(x_data, y_data)

class Admin(ObjectAdmin):
form_display = [’amplitude’, ’phase’, ’chart’]
field_attributes = dict(amplitude = dict(delegate=delegates.FloatDelegate,

editable=True),
phase = dict(delegate=delegates.FloatDelegate,

editable=True),
chart = dict(delegate=delegates.ChartDelegate))

The PlotContainer object takes as its arguments, the same arguments that can be passed to the matplotlib plot com-
mand. The container stores all those arguments, and later passes them to the plot command executed within the gui
thread.

doc/../_static/snippets/simple_plot.png

The simpel chart containers map to their respective matplotlib command. They include :

3.9.2 Actions

The PlotContainer and BarContainer can be used to print or display charts as part of an action through the use of the
appropriate action steps :

• camelot.view.action_steps.print_preview.PrintChart

• camelot.view.action_steps.gui.ShowChart

class ChartPrint(Action):

def model_run(self, model_context):
from camelot.container.chartcontainer import BarContainer
from camelot.view.action_steps import PrintChart
chart = BarContainer([1, 2, 3, 4],

[5, 1, 7, 2])
print_chart_step = PrintChart(chart)

70 Chapter 3. Camelot Documentation

Camelot Documentation, Release

print_chart_step.page_orientation = QtGui.QPrinter.Landscape
yield print_chart_step

3.9.3 Advanced Plots

For more advanced plots, the camelot.container.chartcontainer.AxesContainer class can be used.
The AxesContainer class can be used as if it were a matplotlib Axes object. But when a method on the AxesContainer
is called it will record the method call instead of creating a plot. These method calls will then be replayed by the gui
to create the actual plot.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates
from camelot.container.chartcontainer import AxesContainer

class Wave(object):

def __init__(self):
self.amplitude = 1
self.phase = 2.89

@property
def chart(self):

import math
axes = AxesContainer()
x_data = [x/100.0 for x in range(1, 700, 1)]
y_data = [self.amplitude * math.sin(x - self.phase) for x in x_data]
axes.plot(x_data, y_data)
axes.grid(True)
axes.axvspan(self.phase-0.05, self.phase+0.05, facecolor=’b’, alpha=0.5)
return axes

class Admin(ObjectAdmin):
form_display = [’amplitude’, ’phase’, ’chart’]
field_attributes = dict(amplitude = dict(delegate=delegates.FloatDelegate,

editable=True),
phase = dict(delegate=delegates.FloatDelegate,

editable=True),
chart = dict(delegate=delegates.ChartDelegate))

doc/../_static/snippets/advanced_plot.png

3.9.4 More

For more information on the various types of plots that can be created, have a look at the Matplotlib Gallery.

When the AxesContainer does not provide enough flexibility, for example when the plot
needs to manipulated through its object structure, more customization is possible by sub-
classing either the camelot.container.chartcontainer.AxesContainer or the
camelot.container.chartcontainer.FigureContainer :

3.9. Charts 71

http://matplotlib.sourceforge.net/gallery.html

Camelot Documentation, Release

3.10 Document Management

Camelot provides some features for the management of documents. Notice that documents managed by Camelot are
stored in a specific location (either an application directory on the local disk, a network share or a remote server).

This in contrast with some application that just store the link to a file in the database, and don’t store the file itself.

Three concepts are important for understanding how Camelot handles documents :

• The Storage : this is the place where Camelot stores its documents, by default this is a directory on the local
system. When a file is checked in into a storage, a StoredFile is returned. Files are checked out from the storage
by their StoredFile representation.

• The StoredFile : a stored file is a representation of a file stored in a storage. It does not contain the file itself but
its name and meta information.

• The File Field type : is a custom field type to write and read the StoredFile into the database. The actual name
of the StoredFile is the only thing stored in the database.

3.10.1 The File field type

Usually the first step when working with documents is to use the File field type somewhere in the model definition.
Alternatively the Image field type can be used if one only wants to store images in that field.

3.10.2 The StoredFile

When the File field type is used in the code, it returns and accepts objects of type StoredFile.

The Image field type will return objects of type StoredImage.

3.10.3 The Storage

This is where the actual file is stored. The default storage implementation simply represents a directory on the file
system.

3.11 Under the hood

A lot of things happen when a Camelot application starts up. In this section we give a brief overview of those which
might need to be adapted for more complex applications

3.11.1 Global settings

Camelot has a global settings object of which the attributes are used throughout Camelot whenever a piece of global
configuration is needed. Examples of such global configuration are the location of the database and the location of
stored files and images. To access the global configuration, simply import the object

from camelot.core.conf import settings
print settings.CAMELOT_MEDIA_ROOT()

72 Chapter 3. Camelot Documentation

Camelot Documentation, Release

To manipulate the global configuration, create a class with the needed attributes and methods and append it to the
global configuration :

The settings object should have a method named ENGINE, uses the create_engine SQLAlchemy function to create a
connection to the database. Camelot provides a default sqlite URI scheme. But you can set your own.

def ENGINE(self):
from sqlalchemy import create_engine
return create_engine(u’sqlite:///%s/%s’%(self.data_folder,

self.data))

Older versions of Camelot looked for a settings module on sys.path to look for the global configuration. This approach
is still supported.

3.11.2 Setting up the ORM

When the application starts up, the setup_model method of the Settings class is called. In this function, all model files
should be imported, to make sure the model has been completely setup. The importing of these files is enough to
define the mapping between objects and tables.

The import of these model definitions should happen before the call to create_all to make sure all models are known
before the tables are created.

3.11.3 Setting up the Database

Engine

The Settings class should contain a method named ENGINE that returns a connection to the database. Whenever a
connection to the database is needed, this method will be called. The camelot.core.conf.SimpleSettings
has a default ENGINE method that returns an SQLite database in a user directory.

Metadata

SQLAlchemy defines the MetaData class. A MetaData object contains all the information about a database schema,
such as Tables, Columns, Foreign keys, etc. The camelot.core.sql contains the singleton metadata object which
is the default MetaData object used by Camelot. In the setup_model function, this metadata object is bound to the
database engine.

In case an application works with multiple database schemas in parallel, this step needs to be adapted.

Creating the tables

By simply importing the modules which contain parts of the model definition, the needed table information is added
to the metadata object. At the end of the setup_model function, the create_all method is called on the metadata, which
will create the tables in the database if they don’t exist yet.

3.11.4 Working without the default model

Camelot comes with a default model for Persons, Organizations, History tracking, etc.

To turn these on or off, simply add or remove the import statements of those modules from the setup_model method
in the Settings class.

3.11. Under the hood 73

http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine

Camelot Documentation, Release

3.11.5 Transactions

Transactions in Camelot can be used just as in normal SQLAlchemy. This means that inside a
camelot.admin.action.base.Action.model_run() method a transaction can be started and committed

with model_context.session.begin()
...do some modifications...

More information on the transactional behavior of the session can be found in the SQLAlchemy documentation ...

3.11.6 Using Camelot without the GUI

Often a Camelot application also has a non GUI part, like batch scripts, server side scripts, etc.

It is of course perfectly possible to reuse the whole model definition in those non GUI parts. The easiest way to do so
is to leave the Camelot GUI application as it is and then in the non GUI script, initialize the model first

from camelot.core.conf import settings
settings.setup_model()

From that point, all model manipulations can be done. Access to the single session can be obtained from anywhere
through the Session factory method

from camelot.core.orm import Session
session = Session()

After the manipulations to the model have been done, they can be flushed to the db

session.flush()

3.12 Built in data models

Camelot comes with a number of built in data models. To avoid boiler plate models needed in almost any application
(like Persons, Addresses, etc.), the developer is encouraged to use these data models as a start for developing custom
applications.

3.12.1 Modules

The camelot.model module contains a number of submodules, each with a specific purpose

To activate such a submodule, the submodule should be imported in the setup_model method of settings class, before
the tables are created

def setup_model(self):
from camelot.core.sql import metadata
metadata.bind = self.ENGINE()
from camelot.model import authentication
from camelot.model import party
from camelot.model import i18n
from camelot.core.orm import setup_all
setup_all(create_tables=True)

74 Chapter 3. Camelot Documentation

http://docs.sqlalchemy.org/en/latest/orm/session.html#committing

Camelot Documentation, Release

Persons and Organizations

I18N

Fixture

Authentication

Batch Jobs

A batch job object can be used as a context manager :

from camelot.model.batch_job import BatchJob, BatchJobType
synchronize = BatchJobType.get_or_create(u’Synchronize’)
with BatchJob.create(synchronize) as batch_job:

batch_job.add_strings_to_message([u’Synchronize part A’,
u’Synchronize part B’])

batch_job.add_strings_to_message([u’Done’], color = ’green’)

Whenever an exception happens inside the with block, the stack trace of this exception will be written to the bach job
object and it’s status will be set to errors. At the end of the with block, the status of the batch job will be set to finished.

History tracking

3.12.2 Customization

Adding fields

Sometimes the built in models don’t have all the fields or relations required for a specific application. Fortunately it is
possible to add fields to an existing model on a per application base.

To do so, simply assign the required fields in the application specific model definition, before the tables are created.

party.Person.language = schema.Column(types.Unicode(30))

metadata.create_all()
p = party.Person(first_name = u’Peter’,

last_name = u’Principle’,
language = u’English’)

session.flush()

3.13 Fixtures : handling static data in the database

Some tables need to be filled with default data when users start to work with the application. The Camelot fixture
module camelot.model.fixture assist in handling this kind of data.

Suppose we have an entity PartyCategory to divide Persons and Organizations into certain groups.

The complete definition of such an entity can be found in camelot.model.authentication.PartyCategory.

To make things easier for the first time user, some prefab categories should be available when the user starts the
application. Such as Suspect, Prospect, VIP.

3.13. Fixtures : handling static data in the database 75

Camelot Documentation, Release

3.13.1 When to update fixtures

Most of the time static data should be created or updated right after the model has been set up and before the user
starts using the application.

The easiest place to do this is in the setup_model method inside the settings.py module.

So we rewrite settings.py to include a call to a new update_fixtures method:

def update_fixtures():
"""Update static data in the database"""
from camelot.model.fixture import Fixture
from model import MovieType

def setup_model():
from camelot.model import *
from camelot.model.memento import *
from camelot.model.synchronization import *
from camelot.model.authentication import *
from camelot.model.i18n import *
from camelot.model.fixture import *
from model import *
setup_all(create_tables=True)
updateLastLogin()
update_fixtures()

3.13.2 Creating new data

When creating new data with the fixture module, a reference to the created data will be stored in the fixture table along
with a ‘fixture key’. This fixture key can be used later to retrieve or update the created data.

So lets create some new movie types:

def update_fixtures():
"""Update static data in the database"""
from camelot.model.fixture import Fixture
from model import MovieType
Fixture.insertOrUpdateFixture(MovieType,

fixture_key = ’comic’,
values = dict(name=’Comic’))

Fixture.insertOrUpdateFixture(MovieType,
fixture_key = ’scifi’,
values = dict(name=’Science Fiction’))

Fixture keys should be unique for each Entity class.

3.13.3 Update fixtures

When a new version of the application gets released, we might want to change the static data and add some icons to
the movie types. Thanks to the ‘fixture key’, it’s easy to retrieve and update the already inserted data, just modify the
update_fixtures function:

def update_fixtures():
"""Update static data in the database"""
from camelot.model.fixture import Fixture
from model import MovieType
Fixture.insertOrUpdateFixture(MovieType,

76 Chapter 3. Camelot Documentation

Camelot Documentation, Release

fixture_key = ’comic’,
values = dict(name=’Comic’, icon=’spiderman.png’))

Fixture.insertOrUpdateFixture(MovieType,
fixture_key = ’scifi’,
values = dict(name=’Science Fiction’, icon=’light_saber.png’))

3.13.4 The fixture version

In case lots of data needs to be read into the database (like a list of postal codeds), it might make no sense to create a
new fixture for each code, instead a fixture version number can be set to indicate a list has been read into the database.
The camelot.model.fixture.FixtureVersion exists to facilitate this.

import csv
if FixtureVersion.get_current_version(u’demo_data’) == 0:

reader = csv.reader(open(example_file))
for line in reader:

Person(first_name = line[0], last_name = line[1])
FixtureVersion.set_current_version(u’demo_data’, 1)
session.flush()

3.14 Managing a Camelot project

Once a project has been created and set up as described in the tutorial Creating a Movie Database Application, it needs
to be maintained and managed over time.

The command line tool camelot_admin.py exist to assist in the management of Camelot projects.

3.14.1 camelot_admin.py

3.15 The Two Threads

Most users of Camelot won’t need the information in this Chapter and can simply enjoy building applications that
don’t freeze. However, if you start customizing your application beyond developing custom delegates, this information
might be crucial to you.

3.15.1 Introduction

A very important aspect of any GUI application is the speed with which it responds to the user’s request. While it
is acceptable that some actions take some time to complete, an application freezing for even half a second makes the
user feel uncomfortable.

From an application developer’s point of view, potential freezes are everywhere (open a file, access a database, do
some calculations), so we need a structural approach to get rid of them.

Two different approaches are possible. The first approach is split all possibly blocking operations into small parts and
hook everything together with events. This is the approach taken in some of the QT classes (eg.: the network classes)
or in the Twisted framework. The second approach is to use multiple threads of execution and make sure the blocking
operations run in another thread than the GUI.

Events :

• No multi-threaded programming needed : no deadlocks etc.

3.14. Managing a Camelot project 77

Camelot Documentation, Release

• Every single library you use must support this approach

Multiple threads :

• Scary : potential race conditions and deadlocks

• Can be used with existing libraries

The Camelot framework was developed using the multi-threaded approach. This allows to build on top of a large
number of existing libraries (sqlalchemy, PIL, numpy,...) that don’t support the event based approach.

3.15.2 Two Threads

To keep the problems associated with multi-threaded programming under control, Camelot runs only two threads for
its basic operations. Those threads don’t share any data with each other and exchange information using a message
queue (the way Erlang advocates). This ensures there are no deadlocks or race conditions.

The first thread, called the GUI Thread contains the QT widgets and runs the QT event loop. No blocking operations
should take place in this thread. The second thread contains all the data, like objects mapped to the database by
sqlalchemy, and is called the Model Thread.

This approach keeps the problem of application freezes under control, it won’t speed up your application when certain
actions take a long time, but it will ensure the gui remains responsive during those actions.

3.15.3 The Model Thread

Since every single operation on a data model is potentially blocking (eg : getting an attribute of a class mapped to the
database by sqlalchemy might trigger a query to the database which might be overloaded at that time), the whole data
model lives in a separate thread and every operation on the data model should take place within this thread.

To keep things simple and avoid the use of locks and data synchronization between threads, there is only one such
thread, called the Model Thread.

Other threads that want to interact with the model can post operations to the model thread using its queue

from camelot.view.model_thread import get_model_thread

mt = get_model_thread()
mt.post(my_operation)

where ‘my_operation’ is a function that will then be executed within the model thread.

3.15.4 The GUI Thread

Now that all potentially blocking operations have been move to the model thread, we have a GUI Thread that never
blocks. But the GUI thread will need some data from the model to present to the user.

The GUI thread gets its data by posting an operation to the Model Thread that strips some data from the model, this
data will then be posted by the Model thread to the GUI thread.

Suppose we want to display the name of the first person in the database in a QLabel

from camelot.view.model_thread import get_model_thread
from PyQt4 import QtGui

class PersonLabel(QtGui.QLabel):

def __init__(self):

78 Chapter 3. Camelot Documentation

Camelot Documentation, Release

QtGui.QLabel.__init__(self)
mt = get_model_thread()
mt.post(self.strip_data_from_model, self.put_data_on_label)

def strip_data_from_model(self):
from camelot.model.authentication import Person
return Person.query.first().name

def put_data_on_label(self, name):
self.setText(name)

When the strip_data_from_model method is posted to the Model Thread, it will be executed within the Model Thread
and its result (the name of the person) will be posted back to the GUI thread. Upon arrival of the name in the GUI
thread the function put_data_on_label will be executed within the GUI thread with as its first argument the name.

In reality, the stripping of data from the model and presenting this data to the gui is taken care off by the proxy classes
in camelot.view.proxy.

3.15.5 Actions

3.15.6 Proxy classes

3.15. The Two Threads 79

Camelot Documentation, Release

3.15.7 Application speedup

3.16 Frequently Asked Questions

3.16.1 How to use the PySide bindings instead of PyQt ?

The Camelot sources as well as the example videostore application can be converted from PyQt applications to PySide
with the camelot_admin tool.

Download the sources and position the shell in the main directory, and then issue these commands:

python camelot/bin/camelot_admin.py to_pyside .

This will create a subdirectory ‘to_pyside’ which contains the converted source code.

3.16.2 Can I use Camelot with an existing database ?

Both Declarative and Camelot can be used with an existing schema. However, since Camelot acts on objects, the
classes for those objects still need to be defined.

Here’s a short example of using camelot with an existing database :

from sqlalchemy.engine import create_engine
from sqlalchemy.pool import StaticPool

engine = create_engine(’sqlite:///test.sqlite’)
#
Create a table in the database using plain old sql
#
connection = engine.connect()
try:

connection.execute("""drop table person""")
except:

pass
connection.execute("""create table person (pk INTEGER PRIMARY KEY,

first_name TEXT NOT NULL,
last_name TEXT NOT NULL)""")

connection.execute("""insert into person (first_name, last_name)
values ("Peter", "Principle")""")

#
Use declarative to reflect the table and create classes
#
from camelot.admin.entity_admin import EntityAdmin
from camelot.core.sql import metadata
from sqlalchemy.schema import Table
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base(metadata = metadata)

class Person(Base):
__table__ = Table(’person’, Base.metadata,

autoload=True, autoload_with=engine)

80 Chapter 3. Camelot Documentation

Camelot Documentation, Release

class Admin(EntityAdmin):
list_display = [’first_name’, ’last_name’]

#
Setup a camelot application
#
from camelot.admin.application_admin import ApplicationAdmin
from camelot.admin.section import Section
from camelot.core.conf import settings

class AppAdmin(ApplicationAdmin):

def get_sections(self):
return [Section(’All tables’, self, items = [Person])]

class Settings(object):

def ENGINE(self):
return engine

def setup_model(self):
metadata.bind = engine

settings.append(Settings())
app_admin = AppAdmin()

#
Start the application
#
if __name__ == ’__main__’:

from camelot.view.main import main
main(app_admin)

More information on using Declarative with an existing database schema can be found in the Declarative documenta-
tion.

3.16.3 Why is there no Save button ?

Early on in the development process, the controversial decision was made not to have a Save button in Camelot. Why
was that ?

• User friendlyness. One of the major objectives of Camelot is to be user friendly. This also means we should
reduce the number of ‘clicks’ a user has to do before achieving something. We believe the ‘Save’ click is an
unneeded click. The application knows when the state of a form is valid for persisting it to the database, and can
do so without user involvement. We also want to take the ‘saving’ issue out of the mind of the user, he should
not bother wether his work is ‘saved’, it simply is.

• Technical. Once you decide to use a Save button, you need to ask yourself where you will put that button
and what its effect will be. This question becomes difficult when you want to enable the user to edit a complex
datastructure with one-to-many and many-to-many relations. Most applications solve this by limiting the options
for the user. For example, most accounting packages will not allow you to create a new customer when you are
creating a new invoice. Because when you save the invoice, should the customer be saved as well ? Or should
the customer have it’s own save button ? Those packages therefor require the user to first create a customer, and
only then can an invoice be created. These are limitation we don’t want to impose with Camelot.

• Consistency between editing in table or form view. We wanted the table view to be really easy to edit (to behave
a bit like a spreadsheet), so it’s easy for the user to do bulk updates. As such the user should not be bothered by

3.16. Frequently Asked Questions 81

http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html#using-reflection-with-declarative

Camelot Documentation, Release

pressing the Save button all the time. If there is no need to save in the table view, there should be no need in the
form view either.

Some couter arguments for this decision are :

• But what if the user wants to ‘modify’ a form and not save those changes ? This is indeed something that is
not possible without a Save and it accompanying Cancel button. But this is something a developer will do a lot
while testing an application, but is outside of the normal workflow of a user. Most users typically want to enter
or modify as much data as possible, they are not testing the application to see how it would behave on certain
data input.

• A form should be validated before it is saved. In an application there are two levels of validation. The first
level is to validate before something is persisted into the database, this can be done in Camelot using a custom
implementation of a camelot.admin.validator.entity_validator.EntityValidator. The
second level is a validation before the entered data can be used in the business process. To do this second
level validation, one can use state changes (Action buttons that change the state of a form, eg from ‘Draft’ to
‘Complete’). A good example of this is when entering a booking into an accounting package. When a booking
is entered, it can only be used when debit equals credit. What would happen when this validation is done at
the moment the form is ‘saved’. Suppose a user has been working for the better part of the day on a complex
booking, but is not done yet at the end of the day. Since he cannot yet save his work he has two options, discard
it and restart the next day, or enter some bogus data to be able to save it. What will happen in the later case
when his manager is creating a report a bit later. So the correct situation in this case is having your work saved
at all times, and to put your booking from a ‘draft’ state to a ‘complete’ state once its ready. This state change
will then check if debit equals credit.

Two years after we made this move, Apple decided to follow our example : http://www.apple.com/macosx/whats-
new/auto-save.html

3.16.4 But my users really want a Save button ?

We advise you to listen very well to the arguments the user has for wanting a Save button. You will be able to solve
most of them by using state changes instead of a Save button. The other arguments probably have to do with expections
users have from using other applications, as for those simply ask the users to try to work for a week without a Save
button and get back to you if after that week, they still have issues with it. Please let us know when they do !

82 Chapter 3. Camelot Documentation

http://www.apple.com/macosx/whats-new/auto-save.html
http://www.apple.com/macosx/whats-new/auto-save.html

CHAPTER

FOUR

MIGRATE EXISTING CAMELOT
PROJECTS

4.1 Migrate from Camelot 11.12.30 to 12.06.29

The place of the default metadata has changed. So the top line at the model files should change from:

from camelot.model import metadata

to:

from camelot.core.sql import metadata

All Camelot models that you wish to use should be explicitely imported in the setup_model method in settings.py.
And the metadata should be bound to the engine explicitly in the setup_model method:

def setup_model():
from camelot.core.sql import metadata
metadata.bind = ENGINE()
from camelot.model import authentication
from camelot.model import party
from camelot.model import i18n
from camelot.model import memento
from camelot.model import fixture
setup_model(True)

The authentication module has been split into authentication and party. Person and Organization related imports
should be redefined

from camelot.model.authentication import Person

Should become

from camelot.model.party import Person

There were some changes in the data model of Camelot, in the parts that track change history and handle authentication.
Run this SQL script against your database to do the upgrade, after taking a backup.

On Postgresql

ALTER TABLE memento ADD memento_type INT;
ALTER TABLE memento ADD COLUMN previous_attributes bytea;
UPDATE memento SET

memento_type = 1,

83

Camelot Documentation, Release

previous_attributes = memento_update.previous_attributes
FROM memento_update WHERE memento.id = memento_update.memento_id;
UPDATE memento SET

memento_type = 2,
previous_attributes = memento_delete.previous_attributes

FROM memento_delete WHERE memento.id = memento_delete.memento_id;
UPDATE memento SET

memento_type = 3
FROM memento_create WHERE memento.id = memento_create.memento_id;
ALTER TABLE memento ALTER COLUMN memento_type SET NOT NULL;
ALTER TABLE memento DROP COLUMN row_type;
DROP TABLE memento_update;
DROP TABLE memento_delete;
DROP TABLE memento_create;
CREATE INDEX ix_memento_memento_type

ON memento (memento_type);
ALTER TABLE authentication_mechanism ADD COLUMN authentication_type INT;
ALTER TABLE authentication_mechanism ADD COLUMN username VARCHAR(40);
ALTER TABLE authentication_mechanism ADD COLUMN password VARCHAR(200);
ALTER TABLE authentication_mechanism ADD COLUMN from_date DATE;
ALTER TABLE authentication_mechanism ADD COLUMN thru_date DATE;
ALTER TABLE authentication_mechanism DROP COLUMN row_type;
ALTER TABLE authentication_mechanism DROP COLUMN is_active;
UPDATE authentication_mechanism SET

authentication_type = 1,
from_date = ’2000-01-01’,
thru_date = ’2400-12-31’,
username = authentication_mechanism_username.username,
password = authentication_mechanism_username.password

FROM authentication_mechanism_username WHERE authentication_mechanism.id = authentication_mechanism_username.authenticationmechanism_id;
ALTER TABLE authentication_mechanism ALTER COLUMN authentication_type SET NOT NULL;
ALTER TABLE authentication_mechanism ALTER COLUMN from_date SET NOT NULL;
ALTER TABLE authentication_mechanism ALTER COLUMN thru_date SET NOT NULL;
DROP TABLE authentication_mechanism_username;
CREATE INDEX ix_authentication_mechanism_from_date

ON authentication_mechanism (from_date);
CREATE INDEX ix_authentication_mechanism_thru_date

ON authentication_mechanism (thru_date);
CREATE INDEX ix_authentication_mechanism_username

ON authentication_mechanism (username);
CREATE INDEX ix_authentication_mechanism_authentication_type

ON authentication_mechanism (authentication_type);

On MySQL

ALTER TABLE memento ADD memento_type INT;
ALTER TABLE memento ADD COLUMN previous_attributes blob;
UPDATE memento, memento_update SET

memento.memento_type = 1,
memento.previous_attributes = memento_update.previous_attributes

WHERE memento.id = memento_update.memento_id;
UPDATE memento, memento_delete SET

memento.memento_type = 2,
memento.previous_attributes = memento_delete.previous_attributes

WHERE memento.id = memento_delete.memento_id;
UPDATE memento, memento_create SET

memento.memento_type = 3
WHERE memento.id = memento_create.memento_id;
ALTER TABLE memento ALTER COLUMN memento_type SET NOT NULL;

84 Chapter 4. Migrate existing Camelot projects

Camelot Documentation, Release

ALTER TABLE memento DROP COLUMN row_type;
DROP TABLE memento_update;
DROP TABLE memento_delete;
DROP TABLE memento_create;
CREATE INDEX ix_memento_memento_type

ON memento (memento_type);
ALTER TABLE authentication_mechanism ADD COLUMN authentication_type INT;
ALTER TABLE authentication_mechanism ADD COLUMN username VARCHAR(40);
ALTER TABLE authentication_mechanism ADD COLUMN password VARCHAR(200);
ALTER TABLE authentication_mechanism ADD COLUMN from_date DATE;
ALTER TABLE authentication_mechanism ADD COLUMN thru_date DATE;
ALTER TABLE authentication_mechanism DROP COLUMN row_type;
ALTER TABLE authentication_mechanism DROP COLUMN is_active;
UPDATE authentication_mechanism, authentication_mechanism_username SET

authentication_mechanism.authentication_type = 1,
authentication_mechanism.from_date = ’2000-01-01’,
authentication_mechanism.thru_date = ’2400-12-31’,
authentication_mechanism.username = authentication_mechanism_username.username,
authentication_mechanism.password = authentication_mechanism_username.password

WHERE authentication_mechanism.id = authentication_mechanism_username.authenticationmechanism_id;
ALTER TABLE authentication_mechanism ALTER COLUMN authentication_type SET NOT NULL;
ALTER TABLE authentication_mechanism ALTER COLUMN from_date SET NOT NULL;
ALTER TABLE authentication_mechanism ALTER COLUMN thru_date SET NOT NULL;
DROP TABLE authentication_mechanism_username;
CREATE INDEX ix_authentication_mechanism_from_date

ON authentication_mechanism (from_date);
CREATE INDEX ix_authentication_mechanism_thru_date

ON authentication_mechanism (thru_date);
CREATE INDEX ix_authentication_mechanism_username

ON authentication_mechanism (username);
CREATE INDEX ix_authentication_mechanism_authentication_type

ON authentication_mechanism (authentication_type);

Or simply drop these tables and have them recreated by Camelot and lose the history information

DROP TABLE memento_update;
DROP TABLE memento_delete;
DROP TABLE memento_create;
DROP TABLE memento;
DROP TABLE authentication_mechanism_username;
DROP TABLE authentication_mechanism;

Consider converting your settings.py module to a settings object .

4.2 Migrate from Camelot 12.06.29 to 13.04.13

• Replace all imports from elixir with import from camelot.core.orm. This should cover most use
cases of Elixir, use cases that are not covered in the new module (inheritance, elixir extensions)
should be rebuild using Declarative. Notice that it is still possible to continue using Elixir, but not
encouraged. This is a good time to move your code base over to Declarative.

• If the embedded=True field attribute is in use, this should be removed,
as it is no longer supported. The proposed alternative is to use the
camelot.admin.object_admin.ObjectAdmin.get_compounding_objects()
method on the admin to display multiple objects in the same form.

• Database migration commands for the changed batch job model:

4.2. Migrate from Camelot 12.06.29 to 13.04.13 85

Camelot Documentation, Release

CREATE TABLE ‘batchjob_status‘ (
‘status_datetime‘ date DEFAULT NULL,
‘status_from_date‘ date DEFAULT NULL,
‘status_thru_date‘ date DEFAULT NULL,
‘from_date‘ date NOT NULL,
‘thru_date‘ date NOT NULL,
‘classified_by‘ int(11) NOT NULL,
‘id‘ int(11) NOT NULL AUTO_INCREMENT,
‘status_for_id‘ int(11) NOT NULL,
PRIMARY KEY (‘id‘),
KEY ‘status_for_id‘ (‘status_for_id‘),
KEY ‘ix_batchjob_status_classified_by‘ (‘classified_by‘),
CONSTRAINT ‘batchjob_status_ibfk_1‘ FOREIGN KEY (‘status_for_id‘) REFERENCES ‘batch_job‘ (‘id‘) ON DELETE CASCADE ON UPDATE CASCADE

);
ALTER TABLE ‘batch_job‘ DROP COLUMN ‘status‘;

• Database migration commands for the changed authentication model:

CREATE TABLE authentication_group
(

name character varying(256) NOT NULL,
id serial NOT NULL,
CONSTRAINT authentication_group_pkey PRIMARY KEY (id)

)

CREATE TABLE authentication_group_member
(

authentication_group_id integer NOT NULL,
authentication_mechanism_id integer NOT NULL,
CONSTRAINT authentication_group_member_pkey PRIMARY KEY (authentication_group_id , authentication_mechanism_id),
CONSTRAINT authentication_group_members_fk FOREIGN KEY (authentication_group_id)

REFERENCES authentication_group (id) MATCH SIMPLE
ON UPDATE NO ACTION ON DELETE NO ACTION,

CONSTRAINT authentication_group_members_inverse_fk FOREIGN KEY (authentication_mechanism_id)
REFERENCES authentication_mechanism (id) MATCH SIMPLE
ON UPDATE NO ACTION ON DELETE NO ACTION

)

CREATE TABLE authentication_group_role
(

role_id serial NOT NULL,
group_id integer NOT NULL,
CONSTRAINT authentication_group_role_pkey PRIMARY KEY (role_id , group_id),
CONSTRAINT authentication_group_role_group_id_fkey FOREIGN KEY (group_id)

REFERENCES authentication_group (id) MATCH SIMPLE
ON UPDATE CASCADE ON DELETE CASCADE

)

86 Chapter 4. Migrate existing Camelot projects

CHAPTER

FIVE

ADVANCED TOPICS

This is documentation for advanced usage of the Camelot library.

5.1 Internationalization

The Camelot translation system is a very small wrapper around the Qt translation system. Internally, it uses the
QCoreApplication.translate() method to do the actual translation.

On top of that, it adds the possibility for end users to change translations theirselves. Those translations are stored in
the database. This mechanism can be used to adapt the vocabulary of an application to that of a specific company.

5.1.1 How to Specify Translation Strings

Translation strings specify “This text should be translated.”. It’s your responsibility to mark translatable strings; the
system can only translate strings it knows about.

from camelot.core.utils import ugettext as _

message = _("Hello brave new world")

The above example translates the given string immediately. This is not always desired, since the message catalog
might not yet be loaded at the time of execution. Therefore translation strings can be specified as lazy. They will only
get translated when they are used in the GUI.

from camelot.core.utils import ugettext_lazy as _

message = _("This translation is delayed")

Translation strings in model definitions should always be specified as lazy translation strings. Only lazy translation
strings can be translated by the end user in various forms.

5.1.2 Translating Camelot itself

To extract translation files from the Camelot source code, Babel needs to be installed.

In the root folder of the Camelot source directory.

First update the translation template:

python setup.py extract_messages

87

http://babel.edgewall.org/

Camelot Documentation, Release

If your language directory does not yet exists in ‘camelot/art/translations’:

python setup.py init_catalog --locale nl

If it allready exists, update it from the translation template:

python setup.py update_catalog

In the language subdirectory of ‘camelot/art/translations’, there is a subdirectory ‘LC_MESSAGES’ which contains
the .po translation file. This translation file can then be translated with linguist

linguist camelot.po

And edit it :

Make sure to save them back as GNU gettext .po files.

Then the .po file should be converted to a .qm file to make it loadable at run time:

lrelease camelot.po

Don’t forget to post your new .po file on the mailing list, so it can be included in the next release.

For more background information, please have a look at the Babel Documentation

5.1.3 Where to put Translations

Translations can be put in 2 places :

• in po files which have to be loaded at application startup

• in the Translation table : this table is editable by the users via the Configuration menu. This is the place to put
translations that should be editable by the users. At application startup, all records in this table related to the
current language will be put in memory.

88 Chapter 5. Advanced Topics

http://babel.edgewall.org/wiki/Documentation/setup.html

Camelot Documentation, Release

5.1.4 Loading translations

Translations are loaded when the application starts. To enforce the loading of the correct translation file, one should
overwrite the camelot.admin.application_admin.ApplicationAdmin.get_translator()
method. This method should return the proper QtCore.QTranslator object.

5.1.5 End user translations

Often it is convenient to let the end user create or update the translations of an application, this allows the end user to
put a lot of domain knowledge into the application.

Therefore, all lazy translation strings can be translated by the end user. When the user right-clicks on a label in a form,
he can select Change translation from the menu and update the current translation (for the current language). This
effectively updates the content of the Translation table.

After some time the developer can take a copy of this table and decide to put these translations in po files.

5.2 Unittests

Release default

Date April 23, 2013

5.3 Deployment

After developing a Camelot application comes the need to deploy the application, either at a central location or in a
distributed setup.

5.2. Unittests 89

Camelot Documentation, Release

5.3.1 Building .egg files

Whatever the deployment setup is, it is almost always a good idea to distribute your application as a single .egg file,
containing as much as possible the dependencies that are likely to change often during the lifetime of the application.
Resource files (like icons or templates can be included in this .egg file as well).

Building .egg files is a relatively straightforward process using setuptools.

When a new Camelot project was created with camelot_admin, a setup.py file was made that is able to build eggs
using this command

python -O setup.py bdist_egg --exclude-source-files

Note: The advantage of using .egg files comes when updating the application, simply replacing a single .egg file at a
central location is enough to migrate all your users to the new version.

5.3.2 Windows deployment

Through CloudLaunch

CloudLaunch is a service to ease the deployment and update process of Python applications. It’s main features are :

• Building Windows Installers

• Updating deployed applications

• Monitoring of deployed applications

As CloudLaunch is build on top of setuptools, it works with .egg files, CloudLaunch works cross platform, so it’s
perfectly possible to build a Windows installer, or update a Windows application from Linux.

To build a .egg file that can be deployed through CloudLaunch, use the command:

python.exe setup.py bdist_cloud

This will create 2 files in the dist/cloud folder, a traditional .egg file and a .cld file. The .egg file is a normal .egg file
with some additional metadata included, and without sources. The .cld file contains metadata of the .egg file, such as
its checksum, and information on how get updated versions of the .egg once deployed.

To make sure the application will run smoothly once deployed, one should test if the generated .egg and .cld combi-
nation works:

cd dist\cloud
cloudlaunch.exe --cld-file movie_store.cld
cd ..\..

If this is working, a Windows installer can be build:

python.exe setup.py bdist_cloud wininst_cloud

This will generate a movie_store.exe file in distcloud, which is an installer for your application. The end user can now
install and run your application on his machine.

Now is the time to monitor the application as it runs on the end user machine:

python.exe setup.py monitor_cloud

90 Chapter 5. Advanced Topics

Camelot Documentation, Release

Will display all the logs issued on the end user machine if that machine is connected to the internet.

When development of the application continues, it will be needed to present the user with an updated version of the
application. This is done with the command:

python.exe setup.py bdist_cloud upload_cloud

This will send an updated .egg and .cld file to the central repository, where the end-user application will check for
updates. If such an update is detected, the application will download the new egg and run from that one.

Using .egg files

First of all python needs to be available on the machines that are going to run the application. The easies way to
achieve this is by installing the Conceptive Python Distribution (CPD) on the target machine. This Python distribution
can be installed in End user mode, which means the user will not notice it is installed.

Notice that for python to be available, it not necessarily needs to be installed on every machine that runs the application.
Installing python on a shared disk of a central server might just be enough.

Also put the .egg file on a shared drive.

Then, the easiest way to proceed is to put a little .vbs bootstrap script on the shared drive and put shortcuts to it on the
desktops of the users. The .vbs script can look like this:

5.3. Deployment 91

http://www.python-camelot.com/cpd.html

Camelot Documentation, Release

Set WshShell = WScript.CreateObject("WScript.Shell")
WshShell.Environment("Process").item("PYTHONPATH") = "R:\movie_store-01.01-py2.7.egg;"
WshShell.Run """C:\Program Files\CPD\pythonw.exe"" -m movie_store.main"

5.3.3 Linux deployment

The application can be launched by putting the .egg in the PYTHONPATH and starting python with the -m option:

export PYTHONPATH = /mnt/r/movie_store-01.01-py2.7.egg
python.exe -m movie_store.main

Don’t forget that all dependencies for your application should be installed on the system or put in the PYTHONPATH

5.4 Authentication and permissions

fine grained authentication and authorization is not yet included as part of the Camelot framework.

what is included is the function :

camelot.model.authentication.get_current_authentication()

which returns an object of type :class:‘camelot.model.authentication.AuthenticationMechanism

where the username is the username of the currently logged in user (because on most desktop apps, you don’t want a
separate login process for your app, but rely on that of the OS).

this function can then be used if you build the Admin classes for your application :

• set the editable field attribute to a function that only returns Thrue when the current authentication requires
editing of fields

• in the ApplicationAdmin.get_sections method, to hide/show sections depending on the logged in user

• in the EntityAdmin subclasses, in the get_field_attributes method, to set fields to editable=False/True depending
on the logged in user

5.5 Development Guidlines

Date April 23, 2013

5.5.1 Python, PyQt and Qt objects

Python and Qt both have their own way of tracking objects and deleting them when they are no longer needed :

• Python does reference counting supported by a garbage collector.

• Qt has parent child relations between objects. When a parent object is deleted, all its child objects are deleted
as well.

PyQt merges these two concepts by introducing ownership of objects :

• Pure python objects are owned by Python, Python takes care of their deletion.

• Qt objects wrapped by Python are either:

– owned by Qt when they have a parent object, Qt will delete them, when their parent object is deleted

92 Chapter 5. Advanced Topics

Camelot Documentation, Release

– owned by Python when they have no parent, Python will delete them, and trigger the deletion of all their
children by Qt

• Qt objects that are not wrapped by Python, those are in one way or another children of a Qt object that is wrapped
by Python, they will get deleted by Qt.

The difficult case in this scheme is the case where Qt objects are wrapped by Python but have a parent object. This
can happen in two ways :

• A Qt object is created in python, but with a parent

from PyQt4 import QtCore

parent = QtCore.QObject()
child = QtCore.QObject(parent=parent)

In this case PyQt is able to track when the object is deleted by Qt and raises exceptions accordingly when a
method of underlying Qt object is called after the deletion

parent = QtCore.QObject()
child = QtCore.QObject(parent=parent)
del parent
print child.objectName()

will raise a RuntimeError: underlying C/C++ object has been deleted.

• A Qt object is returned from a Qt function that created the object without Python being aware of it. When the
object is passed as a return value PyQt will wrap it as a Python object, but is unable to track when Qt deletes it

from PyQt4 import QtGui
app = QtGui.QApplication([])
window = QtGui.QMainWindow()
statusbar = window.statusBar()
del window
statusbar.objectName()

Will result in a segmentation fault.

A segmentation fault will happen in several cases :

• Python tries to delete a Qt object already deleted by Qt

• PyQt calls a function of a Qt object already deleted

• Qt calls a function of a Qt object already deleted by Python

In principle, PyQt is able to handle all cases where the object has been created by Python. However, when this
ownership tracking is combined with threading and signal slot connections, a lot of corner cases arise in both Qt and
PyQt.

To play on safe, these guidelines are used when developing Camelot :

• Never keep a reference to objects created by Qt having a parent, so only use:

window.statusBar().objectName()

• Keep references to Qt child objects as short as possible, and never beyond the scope of a method call. This is
possible because qt allows objects to have a name.

so instead of doing

from PyQt4 import QtGui

class Parent(QtGui.QWidget):

5.5. Development Guidlines 93

Camelot Documentation, Release

def __init__(self):
super(Parent, self).__init__()
self._child = QtGui.QLabel(parent=self)

def do_something(self):
print self._child.objectName()

this is done

from PyQt4 import QtGui

class Parent(QtGui.QWidget):

def __init__(self):
super(Parent, self).__init__()
child = QtGui.QLabel(parent=self)
child.setObjectName(’label’)

def do_something(self):
child = self.findChild(QtGui.QWidget, ’label’)
if child != None:

print child.objectName()

should the child object have been deleted by Qt, the findChild method will return None, and a segmentation
fault is prevented. An explicit check for None is needed, since even if the widget exists, it might evaluate to 0
or an empty string.

5.6 Debugging Camelot and PyQt

5.6.1 Log the SQL Queries

Configure SQLAlchemy to log all queries:

logging.getLogger(’sqlalchemy.engine’).setLevel(logging.DEBUG)

5.6.2 Enable core dumps

Linux

For older gdb versions (pre 7), copy the gdbinit file from the python Misc folder:

cp gdbinit ~/.gdbinit

use:

ulimit -c unlimited

load core file in gdb:

gdb /usr/bin/python -c core

In newer gdb versions, Python can run inside gdb:

http://bugs.python.org/issue8032

94 Chapter 5. Advanced Topics

http://bugs.python.org/issue8032

Camelot Documentation, Release

To give gdb python super powers:

(gdb) python
>import sys
>sys.path.append(’Python-2.7.1/Tools/gdb/libpython.py’)
>import libpython
>reload(libpython)
>
>end

https://fedoraproject.org/wiki/Features/EasierPythonDebugging

Windows

• Install Debugging tools for Windows from MSDN

Install ‘Debug Diagnostic Tool’

http://stackoverflow.com/questions/27742/finding-the-crash-dump-files-for-a-c-app

http://blogs.msdn.com/b/tess/

Setup Qt Creator

http://doc.qt.nokia.com/qtcreator-snapshot/creator-debugger-engines.html

• Install Windows Sysinternals process utilities from MSDN

http://technet.microsoft.com/en-us/sysinternals/bb795533

5.6. Debugging Camelot and PyQt 95

https://fedoraproject.org/wiki/Features/EasierPythonDebugging
http://stackoverflow.com/questions/27742/finding-the-crash-dump-files-for-a-c-app
http://blogs.msdn.com/b/tess/
http://doc.qt.nokia.com/qtcreator-snapshot/creator-debugger-engines.html
http://technet.microsoft.com/en-us/sysinternals/bb795533

Camelot Documentation, Release

96 Chapter 5. Advanced Topics

CHAPTER

SIX

CAMELOT ENHANCEMENT
PROPOSALS

This section contains proposals to enhance Camelot. The functionallity described here might not yet be implemented.
The purpose of these documents is to discuss upcomming functions and new API’s before they are implemented.

6.1 Unified Model Definition

status : draft

Note: This Camelot enhancement proposal is a work in progress and implementation has not started.

6.1.1 Introduction

When Camelot is used to display objects that are mapped to the database through SQLAlchemy, Camelot uses intro-
spection to create default views.

When displaying objects that are not mapped to the database, such introspection is not possible. This often leads to a
rather verbose definition of the model and the view

class Task(object):

def __init__(self):
self.description = ’’
self.creation_date = datetime.date.today()

class Admin(ObjectAdmin):
list_display = [’description’, ’due_date’]
field_attributes = { ’description’: {’delegate’:delegates.TextLineDelegate,

’editable’:True},
’due_date’: {’delegate’:delegates.DateDelegate,

’editable’:True}, }

This proposal aims to find a way to create a less descriptive way to define model and view in the case of simple Python
objects.

97

Camelot Documentation, Release

6.1.2 Summary

Fields on objects can be defined in a uniform way wether they are mapped to the database or not. The definition of the
unmapped Task class would be

class Task(object):
description = Field(unicode, default = 0)
due_date = Field(datetime.date, default = 0)

While the definition of the mapped Task class would be

class Task(Entity):
description = Field(sqlalchemy.types.Unicode, default = 0)
due_date = Field(sqlalchemy.types.Date, default = 0)

Both definitions should be enough for Camelot to create a view and make the object usable in the model.

6.1.3 Fields

6.1.4 Default views

6.1.5 Field attributes

6.1.6 Relations

98 Chapter 6. Camelot Enhancement Proposals

CHAPTER

SEVEN

SUPPORT

7.1 Community

Community support is available on the mailing list. Camelot is on Bitbucket to lower contribution efforts.

7.2 Commercial

Commercial support and training is available from Conceptive Engineering, the main authors of Camelot :

Conceptive Engineering
L Van Bauwelstraat 16
2222 Heist-op-den-Berg
Belgium

info@conceptive.be
http://www.conceptive.be
VAT BE 0878 169 209

Priority support tickets can be purchased from the shop. Please contact us for support contracts.

Indices and tables:

• genindex

• modindex

• search

Others:

99

http://groups.google.com/group/project-camelot
http://bitbucket.org/conceptive/camelot
mailto:info@conceptive.be
http://www.conceptive.be
http://www.python-camelot.com/shop.html

Camelot Documentation, Release

7.2.1 Camelot Documentation contents

Tutorials

This section contains various tutorials that will help the reader get a feeling of Camelot. We assume that the reader
has some knowledge of Python.

The reader can read the following sub-sections in any order.

Creating a Movie Database Application

In this tutorial we will create a fully functional movie database application with Camelot. We assume Camelot is
properly installed. An all in one installer for Windows is available as an SDK to develop Camelot applications (Python
SDK).

Setup Spyder In this section, we will explain how to setup the Spyder IDE for developing a Camelot project. If
you are not using Spyder, you can skip this and jump to the next section.

Start → All Programs → Python SDK → Spyder

Within Spyder, open the Project Explorer :

View → Windows and toolbars → Project explorer

In the Project Explorer change the workspace directory, to the directory where you want to put your Camelot Projects.

Next, still in the Project Explorer, right click to create a new project using :

New Project

100 Chapter 7. Support

http://www.python.org
http://www.conceptive.be/python-sdk.html
http://www.conceptive.be/python-sdk.html

Camelot Documentation, Release

Enter Videostore as the project name.

Starting a new Camelot project We begin with the creation of a new Camelot project, using the camelot_admin
tool :

Start → All Programs → Python SDK → New Camelot Application

Note: From the command prompt (or shell), go to the directory in which the new project should be created. Type the
following command:

python -m camelot.bin.camelot_admin

A dialog appears where the basic information of the application can be filled in. Select the newly created Videostore
directory as the location of the source code.

7.2. Commercial 101

Camelot Documentation, Release

Press OK to generate the source code of the project. The source code should now appear in the selected directory.

Main Window and Views To run the application, double click on the main.py file in Spyder, which contains the
entry point of your Camelot application and run this file.

Run → Run → Ok

Note: From the command prompt, simply start the script

python main.py

your Qt GUI should look like the one we show in the picture below:

102 Chapter 7. Support

http://www.qt-project.org

Camelot Documentation, Release

The application has a customizable menu and toolbar, a left navigation pane, and a central area, where default the
Home tab is opened, on which nothing is currently displayed.

The navigation pane has its first section expanded.

7.2. Commercial 103

Camelot Documentation, Release

The navigation pane uses Sections to group Actions. Each button in the navigation pane represents a Section, and each
entry of the navigation tree is an Action. Most standard Actions open a single table view of an Entity in a new tab.

Notice that the application disables most of the menus and the toolbar buttons. When we open a table view, more
options become available.

Entities are opened in the active tab, unless they are opened by selecting Open in New Tab from the context menu
(right click) of the entity link, which will obviously open a new tab to right. Tabs can be closed by clicking the X in
the tab itself.

104 Chapter 7. Support

Camelot Documentation, Release

Each row is a record with some fields that we can edit (others might not be editable). Let’s now add a new row by
clicking on the new icon (icon farthest the the left in the toolbar above the navigation pane).

We now see a new window, containing a form view with additional fields. Forms label required fields in bold.

Fill in a first and last name, and close the form. Camelot will automatically validate and echo the changes to the
database. We can reopen the form by clicking on the blue folder icon in the first column of each row of the table.
Notice also that there is now an entry in our table.

7.2. Commercial 105

Camelot Documentation, Release

That’s it for basic usages of the interface. Next we will write code for our database model.

Creating the Movie Model Let’s first take a look at the main.py in our project directory. It contains a my_settings
object which is appended to the global settings. The Global settings object contains the global configuration for things
such as database and file location.

Now we can look at model.py. Camelot has already imported some classes for us. They are used to create our
entities. Let’s say we want a movie entity with a title, a short description, a release date, and a genre.

The aforementioned specifications translate into the following Python code, that we add to our model.py module:

from sqlalchemy import Unicode, Date
from sqlalchemy.schema import Column
from camelot.core.orm import Entity
from camelot.admin.entity_admin import EntityAdmin

class Movie(Entity):

__tablename__ = ’movie’

title = Column(Unicode(60), nullable = False)
short_description = Column(Unicode(512))
release_date = Column(Date())

106 Chapter 7. Support

Camelot Documentation, Release

genre = Column(Unicode(15))

Note: The complete source code of this tutorial can be found in the camelot_example folder of the Camelot
source code.

Movie inherits camelot.core.orm.Entity, which is the declarative base class for all objects that should be
stored in the database. We use the __tablename__ attribute to to name the table ourselves in which the data will
be stored, otherwise a default tablename would have been used.

Our entity holds four fields that are stored in columns in the table.

title = Column(Unicode(60), nullable = False)

title holds up to 60 unicode characters, and cannot be left empty:

short_description = Column(Unicode(512))

short_description can hold up to 512 characters:

release_date = Column(Date())
genre = Column(Unicode(15))

release_date holds a date, and genre up to 15 unicode characters:

For more information about defining models, refer to the SQLAlchemy Declarative extension.

The different SQLAlchemy column types used are described here. Finally, custom Camelot fields are documented in
the section camelot-column-types.

Let’s now create an EntityAdmin subclass

The EntityAdmin Subclass We have to tell Camelot about our entities, so they show up in the GUI. This
is one of the purposes of camelot.admin.entity_admin.EntityAdmin subclasses. After adding the
EntityAdmin subclass, our Movie class now looks like this:

class Movie(Entity):

__tablename__ = ’movie’

title = Column(Unicode(60), nullable = False)
short_description = Column(Unicode(512))
release_date = Column(Date())
genre = Column(Unicode(15))

def __unicode__(self):
return self.title or ’Untitled movie’

class Admin(EntityAdmin):
verbose_name = ’Movie’
list_display = [’title’, ’short_description’, ’release_date’, ’genre’]

We made Admin an inner class to strengthen the link between it and the Entity subclass. Camelot does not force
us. Assign your EntityAdmin class to the Admin Entity member to put it somewhere else.

verbose_name will be the label used in navigation trees.

The last attribute is interesting; it holds a list containing the fields we have defined above. As the name suggests,
list_display tells Camelot to only show the fields specified in the list. list_display fields are also taken as
the default fields to show on a form.

7.2. Commercial 107

http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html
http://www.sqlalchemy.org
http://docs.sqlalchemy.org/en/rel_0_7/core/types.html

Camelot Documentation, Release

In our case we want to display four fields: title, short_description, release_date, and genre (that is,
all of them.)

The fields displayed on the form can optionally be specified too in the form_display attribute.

We also add a __unicode__() method that will return either the title of the movie entity or ’Untitled movie’
if title is empty. The __unicode__() method will be called in case Camelot needs a textual representation of an
object, such as in a window title.

Let’s move onto the last piece of the puzzle.

Configuring the Application We are now working with application_admin.py. One of the tasks of
application_admin.py is to specify the sections in the left pane of the main window.

The created application has a class, MyApplicationAdmin. This class is a subclass of
camelot.admin.application_admin.ApplicationAdmin, which is used to control the overall
look and feel of every Camelot application.

To change sections in the left pane of the main window, simply overwrite the get_sections method, to return a
list of the desired sections. By default this method contains:

def get_sections(self):
from camelot.model.memento import Memento
from camelot.model.i18n import Translation
return [Section(_(’My classes’),

self,
Icon(’tango/22x22/apps/system-users.png’),
items = []),

Section(_(’Configuration’),
self,
Icon(’tango/22x22/categories/preferences-system.png’),
items = [Memento, Translation])

]

which will display two buttons in the navigation pane, labelled ’My classes’ and ’Configurations’, with
the specified icon next to each label. And yes, the order matters.

We need to add a new section for our Movie entity, this is done by extending the list of sections returned by the
get_sections method with a Movie section:

from videostore.model import Movie
return [Section(_(’Movie’),

self,
Icon(’tango/22x22/apps/system-users.png’),
items = [Movie]),

Section(_(’Configuration’),
self,
Icon(’tango/22x22/categories/preferences-system.png’),
items = [Memento, Translation])

]

The constructor of a section object takes the name of the section, a reference to the application admin object, the icon
to be used and the items in the section. The items is a list of the entities for which a table view should shown.

Camelot comes with the Tango icon collection; we use a suitable icon for our movie section.

We can now try our application.

We see a new button the navigation pane labelled ‘Movies’. Clicking on it fills the navigation tree with the only entity
in the movies’s section. Clicking on this tree entry opens the table view. And if we click on the blue folder of each
record, a form view appears as shown below.

108 Chapter 7. Support

http://tango.freedesktop.org/Tango_Icon_Library

Camelot Documentation, Release

That’s it for the basics of defining an entity and setting it for display in Camelot. Next we look at relationships between
entities.

Relationships We will be using SQLAlchemy’s sqlalchemy.orm.relationshipAPI. We’ll relate a director
to each movie. So first we need a Director entity. We define it as follows:

class Director(Entity):

__tablename__ = ’director’

name = Column(Unicode(60))

Even if we define only the name column, Camelot adds an id column containing the primary key of the Director
Entity. It does so because we did not define a primary key ourselves. This primary key is an integer number, unique
for each row in the director table, and as such unique for each Director object.

Next, we add a reference to this primary key in the movie table, this is called the foreign key. This foreign key column,
called director_id will be an integer number as well, with the added constraint that it can only contain values that
are present in the director table its id column.

Because the director_id column is only an integer, we need to add the director attribute of type
relationship. This will allow us to use the director property as a Director object related to a Movie ob-
ject. The relationship attribute will find out about the director_id column and use it to attach a Director
object to a Movie object

from sqlalchemy.schema import ForeignKey
from sqlalchemy.orm import relationship

class Movie(Entity):

__tablename__ = ’movie’

title = Column(Unicode(60), nullable = False)
short_description = Column(Unicode(512))
release_date = Column(Date())
genre = Column(Unicode(15))

7.2. Commercial 109

Camelot Documentation, Release

director_id = Column(Integer, ForeignKey(’director.id’))
director = relationship(’Director’,

backref = ’movies’)

class Admin(EntityAdmin):
verbose_name = ’Movie’
list_display = [’title’,

’short_description’,
’release_date’,
’genre’,
’director’]

def __unicode__(self):
return self.title or ’untitled movie’

We also inserted ’director’ in list_display.

To be able to have the movies accessible from a director, a backref is defined in the director relationship. This will
result in a movies attribute for each director, containing a list of movie objects.

Our Director entity needs an administration class as well. We will also add __unicode__() method as sug-
gested above. The entity now looks as follows:

class Director(Entity):
__tablename__ = ’director’

name = Column(Unicode(60))

class Admin(EntityAdmin):
verbose_name = ’Director’
list_display = [’name’]
form_display = list_display + [’movies’]

def __unicode__(self):
return self.name or ’unknown director’

Note: Whenever the model changes, the database needs to be updated. This can be done by hand, or by dropping and
recreating the database (or deleting the sqlite file). By default Camelot stores the data in an local directory specified
by the operating system. Look in the startup logs to see where they are stored on your system, look for a line like

[INFO] [camelot.core.conf] - store database and media in /home/username/.camelot/videostore

For completeness the two entities are once again listed below:

class Movie(Entity):

__tablename__ = ’movie’

title = Column(Unicode(60), nullable = False)
short_description = Column(Unicode(512))
release_date = Column(Date())
genre = Column(Unicode(15))

director_id = Column(Integer, ForeignKey(’director.id’))
director = relationship(’Director’,

backref = ’movies’)

class Admin(EntityAdmin):

110 Chapter 7. Support

Camelot Documentation, Release

verbose_name = ’Movie’
list_display = [’title’,

’short_description’,
’release_date’,
’genre’,
’director’]

def __unicode__(self):
return self.title or ’untitled movie’

class Director(Entity):
__tablename__ = ’director’

name = Column(Unicode(60))

class Admin(EntityAdmin):
verbose_name = ’Director’
list_display = [’name’]
form_display = list_display + [’movies’]

def __unicode__(self):
return self.name or ’unknown director’

The last step is to fix application_admin.py by adding the following lines to the Director entity to the Movie
section:

Section(’Movies’,
self,
Icon(’tango/22x22/mimetypes/x-office-presentation.png’),
items = [Movie, Director])

This takes care of the relationship between our two entities.

We have just learned the basics of Camelot, and have a nice movie database application we can play with. In another
tutorial, we will learn more advanced features of Camelot.

Creating a Report with Camelot

With the Movie Database Application as our starting point, we’re going to use the reporting framework in this tutorial.
We will create a report of each movie, which we can access from the movie detail page.

Massaging the model First of all we need to create a button to access our report. This is easily done by specifying
a form_action, right in the Admin subclass of the model. Our appended code will be:

form_actions = [MovieSummary()]

The action is described in the MovieSummary class, which we’ll discuss next. Note that it needs to imported, obvi-
ously:

from movie_summary import MovieSummary

So the movie model admin will look like this:

class Admin(EntityAdmin):
from movie_summary import MovieSummary
verbose_name = _(’Movie’)
list_display = [

7.2. Commercial 111

Camelot Documentation, Release

’title’,
’short_description’,
’release_date’,
’genre’,
’director’

]
form_display = [

’title’,
’cover_image’,
’short_description’,
’release_date’,
’genre’,
’director’

]
form_actions = [

MovieSummary()
]

The Summary class In the MovieSummary class, which is a child class of
camelot.admin.action.base.Action, we need to override just one method; the model_run()
method, which has the model_context object as its argument. This makes accessing the Movie object very easy as
we’ll see in a minute. The model_run method will yield ..., have a guess.... Exactly, a print preview:

class MovieSummary(Action):

verbose_name = _(’Summary’)

def model_run(self, model_context):
from camelot.view.action_steps import PrintHtml
movie = model_context.get_object()
yield PrintHtml("<h1>This will become the movie report of %s!</h1>" % movie.title)

You can already test this. You should see a button in the “Actions” section, on the right of the Movie detail page. Click
this and a print preview should open with the text you let the html method return.

112 Chapter 7. Support

Camelot Documentation, Release

7.2. Commercial 113

Camelot Documentation, Release

Now let’s make it a bit fancier.

Using Jinja templates Install and add Jinja2 to your PYTHONPATH. You can find it here: http://jinja.pocoo.org/2/
or at the cheeseshop http://pypi.python.org/pypi/Jinja2 . Now let’s use its awesome powers.

First we’ll make a base template. This will determine our look and feel for all the report pages. This is basically html
and css with block definitions. Later we’ll create the page movie summary template which will contain our model
data. The movie summary template will inherit the base template, and provide content for the aforementioned blocks.
The base template could look something like:

<html>
<head>

<title>{% block page_head_title %}{% endblock %}</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<style type="text/css">

body, html {
font-family: Verdana, Arial, sans-serif;

}
{% block styles %}{% endblock %}

</style>
</head>
<body>

<table id="page_header" width="100%">
<tr>

114 Chapter 7. Support

http://jinja.pocoo.org/2/
http://pypi.python.org/pypi/Jinja2

Camelot Documentation, Release

<td><h1>{% block page_header %}{% endblock %}</h1></td>
<td align="right">{% block page_header_right %}{% endblock %}</td>

</tr>

</table>
<hr>
<h2 id="page_title"><center>{% block page_title %}{% endblock %}</center></h2>
<hr>
{% block page_content %}{% endblock %}
<hr>
<div id="page_footer">{% block page_footer %}{% endblock %}</div>

</body>
</html>

We’ll save this file as base.html in a directory called templates in our videostore. Like this base template, the movie
summary template is html and css. Take a look at the example first:

{% extends ’base.html’ %}
{% block styles %}{{ style }}{% endblock %}
{% block page_head_title %}{{ title }}{% endblock %}
{% block page_title %}{{ title }}{% endblock %}
{% block page_header %}{{ header }}{% endblock %}
{% block page_header_right %}
{% if cover %}

{% else %}

(no cover)
{% endif %}
{% endblock %}
{% block page_content %}{{ content }}{% endblock %}
{% block page_footer %}{{ footer }}{% endblock %}

First we extend the base template, that way we don’t need to worry about the boilerplate stuff, and keep our pages
consistent, provided we create more reports of course. We can now fill in the blanks, erm blocks from the base
template. We do that with placeholders which we’ll define in the html method of our MovieSummary class. This way
we can even add style to the page:

{% block styles %}{{ style }}{% endblock %}

We’ll define this later. The templating language also allows basic flow control:

{% if cover %}

{% else %}
(no cover)

{% endif %}

If there is no cover image, we’ll show the string “(no cover)”. We’ll save this file as movie_summary.html in the
templates directory.

Like i said earlier, we now need to define which values will go in the placeholders, so let’s update our html method in
the MovieSummary class. First, we import the needed elements:

import datetime
from jinja import Environment, FileSystemLoader
from pkg_resources import resource_filename
import videostore
from camelot.core.conf import settings

7.2. Commercial 115

Camelot Documentation, Release

We’ll be printing a date, so we’ll need datetime. The Jinja classes to make use of our templates. And to locate our
templates, we’ll use the resource module, with our videostore. And load up the Jinja environment ...

fileloader = FileSystemLoader(resource_filename(videostore.__name__, ’templates’))
e = Environment(loader=fileloader)

Now we need to create a context dictionary to provide data to the templates. The keys of this dictionary are the
placeholders we used in our movie_summary template, the values we can use from the model, which is passed as the
o argument in the html method:

context = {
’header’:o.title,
’title’:’Movie Summary’,
’style’:’.label { font-weight:bold; }’,
’content’:’Description: %s
\

Release date: %s
\
Genre: %s
\
Director: %s’
% (o.short_description, o.release_date, o.genre, o.director),

’cover’: os.path.join(settings.CAMELOT_MEDIA_ROOT(), ’covers’, o.cover_image.name),
’footer’:’
copyright %s - Camelot’ % datetime.datetime.now().year
}

Plain old Python dictionary. Check it out, we can even pass css in our setup.

Finally, we’ll get the template from the Jinja environment and return the rendered result of our context:

t = e.get_template(’movie_summary.html’)
return t.render(context)

So our finished method eventually looks like this:

from camelot.admin.action import Action

class MovieSummary(Action):

verbose_name = _(’Summary’)

def model_run(self, model_context):
from camelot.view.action_steps import PrintHtml
import datetime
import os
from jinja import Environment, FileSystemLoader
from pkg_resources import resource_filename
import videostore
from camelot.core.conf import settings

fileloader = FileSystemLoader(resource_filename(videostore.__name__, ’templates’))
e = Environment(loader=fileloader)
movie = model_context.get_object()
context = {

’header’:movie.title,
’title’:’Movie Summary’,
’style’:’.label { font-weight:bold; }’,
’content’:’Description: %s
\

Release date: %s
\
Genre: %s
\
Director: %s’
% (movie.short_description, movie.release_date, movie.genre, movie.director),

’cover’: os.path.join(settings.CAMELOT_MEDIA_ROOT(), ’covers’, movie.cover_image.name),

116 Chapter 7. Support

Camelot Documentation, Release

’footer’:’
copyright %s - Camelot’ % datetime.datetime.now().year
}
t = e.get_template(’movie_summary.html’)
yield PrintHtml(t.render(context))

What are you waiting for? Go try it out! You should see something like this:

Add an import wizard to an application

In this tutorial we will add an import wizard to the movie database application created in the Creating a Movie
Database Application tutorial.

We assume Camelot is properly installed and the movie database application is working.

_static/controls/main_window.png

Introduction Most applications need a way to import data. This data is often delivered in files generated by another
application or company. To demonstrate this process we will build a wizard that allows the user to import cover images

7.2. Commercial 117

Camelot Documentation, Release

into the movie database. For each image the user selects, a new Movie will be created with the selected image as a
cover image.

Create an action All user interaction in Camelot is handled through Actions. For actions that run in the context
of the application, we use the Application Actions. We first create a file importer.py in the same directory as
application_admin.py.

In this file we create subclass of camelot.admin.action.Action which will be the entry point of the import
wizard:

from camelot.admin.action import Action
from camelot.core.utils import ugettext_lazy as _

class ImportCovers(Action):
verbose_name = _(’Import cover images’)

def model_run(self, model_context):
yield

So now we haven an ImportCovers action. Such an action has a verbose_name class attribute with the name
of the action as shown to the user.

The most important method of the action is the model_run method, which will be triggered when the user clicks
the action. This method should be a generator that yields an object whenever user interaction is required. Everything
that happens inside the model_run method happens in a different thread than the GUI thread, so it will not block the
GUI.

Add the action to the GUI Now the user needs to be able to trigger the action. We edit the
application_admin.py file and make sure the ImportCoversAction is imported.

from camelot_example.importer import ImportCovers

Then we add an instance of the ImportCovers action to the sections defined in the get_sections method of
the ApplicationAdmin:

Section(_(’Movies’),
self,
Icon(’tango/22x22/mimetypes/x-office-presentation.png’),
items = [Movie,

Tag,
VisitorReport,

VisitorsPerDirector,
ImportCovers()]),

This will make sure the action pops up in the Movies section of the application.

_static/controls/navigation_pane.png

Select the files To make the action do something useful, we will implement its model_run method. Inside the
model_run method, we can yield various camelot.admin.action.base.ActionStep objects to the

118 Chapter 7. Support

http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

GUI. An ActionStep is a part of the action that requires user interaction (the user answering a question). The result
of this interaction is returned by the yield statement.

To ask the user for a number of image files to import, we will pop up a file selection dialog inside the model_run
method:

def model_run(self, model_context):
from camelot.view.action_steps import (SelectFile,

UpdateProgress,
Refresh,
FlushSession)

select_image_files = SelectFile(’Image Files (*.png *.jpg);;All Files (*)’)
select_image_files.single = False
file_names = yield select_image_files
file_count = len(file_names)

The yield statement returns a list of file names selected by the user.

_static/actionsteps/select_file.png

Create new movies First make sure the Movie class has an camelot.types.Image field named cover which
will store the image files.

cover = Column(camelot.types.Image(upload_to = ’covers’))

Next we add to the model_run method the actual creation of new movies.

import os
from sqlalchemy import orm
from camelot.core.orm import Session
from camelot_example.model import Movie

movie_mapper = orm.class_mapper(Movie)
cover_property = movie_mapper.get_property(’cover’)
storage = cover_property.columns[0].type.storage
session = Session()

for i, file_name in enumerate(file_names):
yield UpdateProgress(i, file_count)
title = os.path.splitext(os.path.basename(file_name))[0]
stored_file = storage.checkin(unicode(file_name))
movie = Movie(title = unicode(title))
movie.cover = stored_file

yield FlushSession(session)

In this part of the code several things happen :

Store the images

In the first lines, we do some sqlalchemy magic to get access to the storage attribute of the cover field. This
storage attribute is of type camelot.core.files.storage.Storage. The Storage represents the files
managed by Camelot.

7.2. Commercial 119

http://docs.python.org/dev/reference/simple_stmts.html#yield
http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

Create Movie objects

Then for each file, a new Movie object is created with as title the name of the file. For the cover attribute, the file is
checked in into the Storage. This actually means the file is copied from its original directory to a directory managed
by Camelot.

Write to the database

In the last line, the session is flushed and thus all changes are written to the database. The
camelot.view.action_steps.orm.FlushSession action step flushes the session and propagetes the
changes to the GUI.

Keep the user informed

For each movie imported, a camelot.view.action_steps.update_progress.UpdateProgress ob-
ject is yield to the GUI to inform the user of the import progress. Each time such an object is yielded, the progress
bar is updated.

_static/controls/progress_dialog.png

Refresh the GUI The last step of the model_runmethod will be to refresh the GUI. So if the user has the Movies
table open when importing, this table will show the newly created movies.

yield Refresh()

Result This is how the resulting importer.py file looks like :

from camelot.admin.action import Action
from camelot.core.utils import ugettext_lazy as _
from camelot.view.art import Icon

class ImportCovers(Action):
verbose_name = _(’Import cover images’)
icon = Icon(’tango/22x22/mimetypes/image-x-generic.png’)

begin select files
def model_run(self, model_context):

from camelot.view.action_steps import (SelectFile,
UpdateProgress,
Refresh,
FlushSession)

select_image_files = SelectFile(’Image Files (*.png *.jpg);;All Files (*)’)
select_image_files.single = False
file_names = yield select_image_files
file_count = len(file_names)

end select files
begin create movies

import os
from sqlalchemy import orm
from camelot.core.orm import Session
from camelot_example.model import Movie

120 Chapter 7. Support

http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

movie_mapper = orm.class_mapper(Movie)
cover_property = movie_mapper.get_property(’cover’)
storage = cover_property.columns[0].type.storage
session = Session()

for i, file_name in enumerate(file_names):
yield UpdateProgress(i, file_count)
title = os.path.splitext(os.path.basename(file_name))[0]
stored_file = storage.checkin(unicode(file_name))
movie = Movie(title = unicode(title))
movie.cover = stored_file

yield FlushSession(session)
end create movies
begin refresh

yield Refresh()
end refresh

Unit tests Once an action works, its important to keep it working as the development of the application continues.
One of the advantages of working with generators for the user interaction, is that its easy to simulate the user interaction
towards the model_run() method of the action. This is done by using the send() method of the generator that is
returned when calling model_run() :

def test_example_application_action(self):
from camelot_example.importer import ImportCovers
from camelot_example.model import Movie
count the number of movies before the import
movies = Movie.query.count()
create an import action
action = ImportCovers()
generator = action.model_run(None)
select_file = generator.next()
self.assertFalse(select_file.single)
pretend the user selected a file
generator.send([os.path.join(os.path.dirname(__file__), ’..’, ’camelot_example’, ’media’, ’covers’, ’circus.png’)])
continue the action till the end
list(generator)
a movie should be inserted
self.assertEqual(movies + 1, Movie.query.count())

Conclusion We went through the basics of the action framework Camelot :

• Subclassing a camelot.admin.action.Action class

• Implementing the model_run method

• yield camelot.admin.action.base.ActionStep objects to interact with the user

• Add the camelot.admin.action.base.Action object to a camelot.admin.section.Section
in the side pane

More camelot.admin.action.base.ActionStep classes can be found in the
camelot.view.action_steps module.

7.2. Commercial 121

http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

Camelot Documentation

This is the reference documentation for developing projects using the Camelot library. The first time Camelot devel-
oper is encouraged to read Creating models and Admin classes.

The section The Two Threads is for developers whishing to maintain a responsive UI when faced with significant
delays in their application code.

All other sections can be read on an as needed base.

Camelot Installation

All in one Windows installer When working on Windows, the easiest way to get up and running is through the
Conceptive Python SDK.

This SDK is a Python distribution targeted at the development and deployment of QT based applications. This all in
one installation of Camelot with all its dependencies is available in the shop.

From the Python Package Index First, make sure you have setup tools installed, Setup tools. If you are using a
debian based distribution, you can type:

sudo apt-get install python-setuptools

122 Chapter 7. Support

http://www.conceptive.be/python-sdk.htm
http://www.conceptive.be/shop.html
http://pypi.python.org/pypi/setuptools

Camelot Documentation, Release

Then use easy_install to install Camelot, under Linux this would be done by typing:

sudo easy_install camelot

Packages Linux distributions often offer packages for various applications, including Camelot and its dependencies
:

• OpenSUSE build service.

From source When installing Camelot from source, you need to make sure all dependencies are installed and avail-
able in your PYTHONPATH.

Dependencies

In addition to PyQt 4.8 and Qt 4.8, Camelot needs these libraries :

SQLAlchemy==0.8.0 Jinja2==2.6 chardet==2.1.1 xlwt==0.7.4 xlrd==0.9.0

Releases

The source code of a release can be downloaded from the Python Package Index and then extracted:

tar xzvf Camelot-10.07.02.tar.gz

Repository

The latest and greatest version of the source can be checked out from the Bitbucket repository:

hg clone https://bitbucket.org/conceptive/camelot

Adapting PYTHONPATH

You need to make sure Camelot and all its dependencies are in the PYTHONPATH before you start using it.

Verifiy the installation To verify if you have Camelot installed and available in the PYTHONPATH, fire up a
python interpreter:

python

and issue these commands:

>>> import camelot
>>> print camelot.__version__
>>> import sqlalchemy
>>> print sqlalchemy.__version__
>>> import PyQt4

None of them should raise an ImportError.

Creating models

Camelot makes it easy to create views for any type of Python objects.

SQLAlchemy is a very powerful Object Relational Mapper (ORM) with lots of possibilities for handling simple
or sophisticated datastructures. The SQLAlchemy website has extensive documentation on all these features. An
important part of Camelot is providing an easy way to create views for objects mapped through SQLAlchemy.

SQLAlchemy comes with the Declarative extension to make it easy to define an ORM mapping using the Active
Record Pattern. This is used through the documentation and in the example code.

7.2. Commercial 123

https://build.opensuse.org/project/show?project=home%3Afrispete%3APyQt
http://pypi.python.org/pypi/Camelot/
http://www.sqlalchemy.org
http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html

Camelot Documentation, Release

To use Declarative, threre are some base classes that should be imported:

from camelot.core.orm import Entity
from camelot.admin.entity_admin import EntityAdmin

from sqlalchemy import sql
from sqlalchemy.schema import Column
import sqlalchemy.types

Those are :

• camelot.core.orm.Entity is the declarative base class provided by Camelot for all classes that are
mapped to the database, and is a subclass of camelot.core.orm.entity.EntityBase

• camelot.admin.entity_admin.EntityAdmin is the base class that describes how an Entity subclass
should be represented in the GUI

• sqlalchemy.schema.Column describes a column in the database and a field in the model

• sqlalchemy.types contains the various column types that can be used

Next a model can be defined:

class Tag(Entity):

__tablename__ = ’tags’

name = Column(sqlalchemy.types.Unicode(60), nullable = False)
movies = ManyToMany(’Movie’,

tablename = ’tags_movies__movies_tags’,
local_colname = ’movies_id’,
remote_colname = ’tags_id’)

def __unicode__(self):
return self.name

class Admin(EntityAdmin):
form_size = (400,200)
list_display = [’name’]

begin visitor report definition

The code above defines the model for a Tag class, an object with only a name that can be related to other ojbects later
on. This code has some things to notice :

• Tag is a subclass of camelot.core.orm.Entity,

• the __tablename__ class attribute allows us to specify the name of the table in the database in which the
tags will be stored.

• The sqlalchemy.schema.Column statement add fields of a certain type, in this case
sqlalchemy.types.Unicode, to the Tag class as well as to the tags table

• The __unicode__ method is implemented, this method will be called within Camelot whenever a textual
representation of the object is needed, eg in a window title or a many to one widget. It’s good practice to always
implement the __unicode__ method for all Entity subclasses.

When a new Camelot project is created, the camelot-admin tool creates an empty models.py file that can be used
as a place to start the model definition.

124 Chapter 7. Support

http://docs.sqlalchemy.org/en/rel_0_8/core/schema.html#sqlalchemy.schema.Column
http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types
http://docs.sqlalchemy.org/en/rel_0_8/core/schema.html#sqlalchemy.schema.Column
http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types.Unicode

Camelot Documentation, Release

Column types SQLAlchemy comes with a set of column types that can be used. These column types will trigger
the use of a certain QtGui.QDelegate to visualize them in the views. Camelot extends those SQLAlchemy field
types with some of its own.

An overview of field types from SQLAlchemy and Camelot is given in the table below :

All SQLAlchemy field types can be found in the sqlalchemy.types module. All additional Camelot field types
can be found in the camelot.types module.

Relations SQLAlchemy uses the relationship function to define relations between classes. This function can be used
within Camelot as well.

On top of this, Camelot provides some construct in the camelot.core.orm.relationships that make setting
up relationships a bit easier.

Calculated Fields To display fields in forms that are not stored into the database but, are calculated at run time, two
main options exist. Either those fields are calculated within the database or they are calculated by Python. Normal
Python properties can be used to do the calculation in Python, whereas ColumnProperties can be used to do the logic
in the database.

Python properties as fields Normal python properties can be used as fields on forms as well. In that case, there
will be no introspection to find out how to display the property. Therefore the delegate (Specifying delegates) attribute
should be specified explicitly.

import math

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

class Coordinate(object):

def __init__(self, x = 0, y = 0):
self.id = 1
self.x = x
self.y = y

@property
def r(self):

return math.sqr(self.x**2, self.y**2)

class Admin(ObjectAdmin):
form_display = [’x’, ’y’, ’r’]
field_attributes = dict(x = dict(delegate = delegates.FloatDelegate,

editable = True),
y = dict(delegate = delegates.FloatDelegate,

editable = True),
r = dict(delegate = delegates.FloatDelegate))

By default, python properties are read-only. They have to be set to editable through the field attributes to make them
writeable by the user.

Properties are also used to summarize information from multiple attributes and put them in a single field.

Cascading field changes Whenever the value of a field is changed, this change can cascade through the model by
using properties to manipulate the field instead of manipulating it directly. The example below demonstrates how the
value of y should be chopped when x is changed.

7.2. Commercial 125

http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types

Camelot Documentation, Release

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

class Coordinate(object):

def __init__(self):
self.id = 1
self.x = 0.0
self.y = 0.0

def _get_x(self):
return self.x

def _set_x(self, x):
self.x = x
self.y = max(self.y,x)

_x = property(_get_x, _set_x)

class Admin(ObjectAdmin):
form_display = [’_x’, ’y’,]
field_attributes = dict(_x=dict(delegate=delegates.FloatDelegate, name=’x’),

y=dict(delegate=delegates.FloatDelegate),)
form_size = (100,100)

doc/../_static/snippets/fields_with_actions.png

Fields calculated by the database Having certain summary fields of your models filled by the database has the
advantage that the heavy processing is moved from the client to the server. Moreover if the summary builds on
information in related records, having the database build the summary reduces the need to transfer additional data
from the database to the server.

To display fields in the table and the form view that are the result of a calculation done by the database, a
camelot.core.orm.properties.ColumnProperty needs to be defined in the Declarative model. In this
column property, the sql query can be defined using SQLAlchemy statements. In this example, the Movie class gains
the total_visitors attribute which contains the sum of all visitors that went to a movie.

@ColumnProperty
def total_visitors(self):

return sql.select([sql.func.sum(VisitorReport.visitors)],
VisitorReport.movie_id == self.id)

It’s important to notice that the value of this field is calculated when the object is fetched from the database. When
the user presses F9, all data in the application is refreshed from the database, and thus all column properties are
recalculated.

Views Traditionally, in database land, views are queries defined at the database level that act like read-only tables.
They allow reuse of common queries across an application, and are very suitable for reporting.

Using SQLAlchemy this traditional approach can be used, but a more dynamic approach is possible as well. We can
map arbitrary queries to an object, and then visualize these objects with Camelot.

126 Chapter 7. Support

Camelot Documentation, Release

The model to start from

doc/../_static/entityviews/table_view_visitorreport.png

In the example movie project, we can take three parts of the model : Person, Movie and VisitorReport:

class Person(Party):
"""Person represents natural persons
"""
using_options(tablename = ’person’)
party_id = Field(camelot.types.PrimaryKey(),

ForeignKey(’party.id’),
primary_key = True)

__mapper_args__ = {’polymorphic_identity’: u’person’}
first_name = Field(Unicode(40), required = True)
last_name = Field(Unicode(40), required = True)

There is a relation between Person and Movie through the director attribute:

class Movie(Entity):

__tablename__ = ’movies’

title = Column(sqlalchemy.types.Unicode(60), nullable = False)
short_description = Column(sqlalchemy.types.Unicode(512))
releasedate = Column(sqlalchemy.types.Date)
genre = Column(sqlalchemy.types.Unicode(15))
rating = Column(camelot.types.Rating())
#
All relation types are covered with their own editor
#
director = ManyToOne(’Person’)
cast = OneToMany(’Cast’)
visitor_reports = OneToMany(’VisitorReport’, cascade=’delete’)
tags = ManyToMany(’Tag’,

tablename = ’tags_movies__movies_tags’,
local_colname = ’tags_id’,
remote_colname = ’movies_id’)

And a relation between Movie and VisitorReport:

class VisitorReport(Entity):

__tablename__ = ’visitor_report’

date = Column(sqlalchemy.types.Date,
nullable = False,
default = datetime.date.today)

visitors = Column(sqlalchemy.types.Integer,
nullable = False,
default = 0)

movie = ManyToOne(’Movie’, required = True)

7.2. Commercial 127

Camelot Documentation, Release

doc/../_static/entityviews/table_view_visitorreport.png

Definition of the view Suppose, we now want to display a table with the total numbers of visitors for all movies of
a director.

We first define a plain old Python class that represents the expected results :

class VisitorsPerDirector(object):

class Admin(EntityAdmin):
verbose_name = _(’Visitors per director’)
list_display = table.Table([table.ColumnGroup(_(’Name and Visitors’), [’first_name’, ’last_name’, ’visitors’]),

table.ColumnGroup(_(’Official’), [’birthdate’, ’social_security_number’, ’passport_number’])]
)

end column group

Then define a function that maps the query that calculates those results to the plain old Python object :

def setup_views():
from sqlalchemy.sql import select, func, and_
from sqlalchemy.orm import mapper

from camelot.model.party import Person
from camelot_example.model import Movie, VisitorReport

s = select([Person.party_id,
Person.first_name.label(’first_name’),
Person.last_name.label(’last_name’),
Person.birthdate.label(’birthdate’),
Person.social_security_number.label(’social_security_number’),
Person.passport_number.label(’passport_number’),
func.sum(VisitorReport.visitors).label(’visitors’),],
whereclause = and_(Person.party_id == Movie.director_party_id,

Movie.id == VisitorReport.movie_id),
group_by = [Person.party_id,

Person.first_name,
Person.last_name,
Person.birthdate,
Person.social_security_number,
Person.passport_number,])

s=s.alias(’visitors_per_director’)

mapper(VisitorsPerDirector, s, always_refresh=True)

Put all this in a file called view.py

Put into action Then make sure the plain old Python object is mapped to the query, just after the Elixir model has
been setup, by modifying the setup_model function in settings.py:

def setup_model():
from sqlalchemy.orm import configure_mappers

128 Chapter 7. Support

Camelot Documentation, Release

from camelot.core.sql import metadata
metadata.bind = settings.ENGINE()
import camelot.model.party
import camelot.model.authentication
import camelot.model.i18n
import camelot.model.fixture
import camelot.model.memento
import camelot.model.batch_job
import camelot_example.model
#
create the tables for all models, configure mappers first, to make
sure all deferred properties have been handled, as those could
create tables or columns
#
configure_mappers()
metadata.create_all()
from camelot.model.authentication import update_last_login
#update_last_login()
#
Load sample data with the fixure mechanism
#
from camelot_example.fixtures import load_movie_fixtures
load_movie_fixtures()
#
setup the views
#
from camelot_example.view import setup_views
setup_views()

And add the plain old Python object to a section in the ApplicationAdmin:

def get_sections(self):

from camelot.model.batch_job import BatchJob
from camelot.model.memento import Memento
from camelot.model.party import (Person, Organization,

PartyCategory)
from camelot.model.i18n import Translation
from camelot.model.batch_job import BatchJob, BatchJobType

from camelot_example.model import Movie, Tag, VisitorReport
from camelot_example.view import VisitorsPerDirector

begin import action
from camelot_example.importer import ImportCovers

end import action

return [
begin section with action

Section(_(’Movies’),
self,
Icon(’tango/22x22/mimetypes/x-office-presentation.png’),
items = [Movie,

Tag,
VisitorReport,

VisitorsPerDirector,
ImportCovers()]),

end section with action
Section(_(’Relation’),

7.2. Commercial 129

Camelot Documentation, Release

self,
Icon(’tango/22x22/apps/system-users.png’),
items = [Person,

Organization,
PartyCategory]),

Section(_(’Configuration’),
self,
Icon(’tango/22x22/categories/preferences-system.png’),
items = [Memento,

Translation,
BatchJobType,
BatchJob
])

]

doc/../_static/entityviews/table_view_visitorsperdirector.png

Admin classes

The Admin classes are the classes that specify how objects should be visualized, they define the look, feel and be-
haviour of the Application. Most of the behaviour of the Admin classes can be tuned by changing their class attributes.
This makes it easy to subclass a default Admin class and tune it to your needs.

130 Chapter 7. Support

Camelot Documentation, Release

ObjectAdmin Camelot is able to visualize any Python object, through the use of the
camelot.admin.object_admin.ObjectAdmin class. However, subclasses exist that use introspection
to facilitate the visualisation.

Each class that is visualized within Camelot has an associated Admin class which specifies how the object or a list of
objects should be visualized.

Usually the Admin class is bound to the model class by defining it as an inner class of the model class:

class Options(object):
"""A python object in which we store the change in rating
"""

def __init__(self):
self.only_selected = True
self.change = 1

Since Options is a plain old python object, we cannot
use an EntityAdmin, and should use the ObjectAdmin
class Admin(ObjectAdmin):

verbose_name = _(’Change rating options’)
form_display = [’change’, ’only_selected’]
form_size = (100, 100)
Since there is no introspection, the delegate should
be specified explicitely, and set to editable
field_attributes = {’only_selected’:{’delegate’:delegates.BoolDelegate,

’editable’:True},
’change’:{’delegate’:delegates.IntegerDelegate,

’editable’:True},
}

begin change rating action definition

Most of the behaviour of the Admin class can be customized by changing the class attributes like verbose_name,
list_display and form_display.

Other Admin classes can inherit ObjectAdmin if they want to provide additional functionallity, like introspection to set
default field attributes.

EntityAdmin The camelot.admin.entity_admin.EntityAdmin class is a subclass of ObjectAdmin that
can be used to visualize objects mapped to a database using SQLAlchemy.

The EntityAdmin uses introspection of the model to guess the default field attributes. This makes the definition of an
Admin class less verbose.

class Tag(Entity):

__tablename__ = ’tags’

name = Column(sqlalchemy.types.Unicode(60), nullable = False)
movies = ManyToMany(’Movie’,

tablename = ’tags_movies__movies_tags’,
local_colname = ’movies_id’,
remote_colname = ’tags_id’)

def __unicode__(self):
return self.name

class Admin(EntityAdmin):

7.2. Commercial 131

Camelot Documentation, Release

form_size = (400,200)
list_display = [’name’]

begin visitor report definition

The camelot.admin.entity_admin.EntityAdmin provides some additonal attributes on top of those pro-
vided by camelot.admin.object_admin.ObjectAdmin, such as list_filter and list_search

Others

Field Attributes

Field attributes are the most convenient way to customize an application, they can be specified through the
field_attributes dictionary of an Admin class :

class VisitorReport(Entity):

__tablename__ = ’visitor_report’

date = Column(sqlalchemy.types.Date,
nullable = False,
default = datetime.date.today)

visitors = Column(sqlalchemy.types.Integer,
nullable = False,
default = 0)

movie = ManyToOne(’Movie’, required = True)
end visitor report definition

class Admin(EntityAdmin):
verbose_name = _(’Visitor Report’)
list_display = [’movie’, ’date’, ’visitors’]
field_attributes = {’visitors’:{’minimum’:0}}

Each combination of a delegate and an editor used to handle a field supports a different set of field attributes. To know
which field attribute is supported by which editor or delegate, have a look at the Delegates documentation.

Static Field Attributes Static field attributes should be the same for every row in the same column, as such they
should be specified as constant in the field attributes dictionary.

132 Chapter 7. Support

Camelot Documentation, Release

Dynamic Field Attributes Some field attributes, like background_color, can be dynamic. This means they can be
specified as a function in the field attributes dictionary.

This function should take as its single argument the object on which the field attribute applies, as can be seen in the
background color example

These are the field attributes that can be dynamic:

Overview of the field attributes

address_validator A function that verifies if a virtual address is valid, and eventually corrects it. The default imple-
mentation can is camelot.view.controls.editors.virtualaddresseditor.default_address_validator()

This function will be called while the user is editing the address, therefor it should take very little time to do the
validation. If the address is invalid, this will be shown to the user, but it will not block the input of the address.

calculator True or False Indicates whether a calculator should be available when editing this field.

create_inline used in a one to many relation, if False, then a new entity will be created within a new window, if
True, it will be created as a new line in the table.

column_width An integer forcing the column width of a field in a table view. The use of this field attribute is
not recommended, since in most cases Camelot will figure out how wide a column should be. The use of mini-
mal_column_width is advised to make sure a column has a certain width. But the column_width field attribute can be
used to shrink the column width to arbitrary sizes, even if this might make the header unreadeable.

field_attributes = { ’first_name’:{’column_width’:8},
’suffix’:{’column_width’:8},}

_static/controls/column_width.png

directory True or False indicates if the file editor should point to a directory instead of a file. By default it points
to a file.

editable True or False

Indicates whether the user can edit the field.

field_name This is the object name of the QtGui.QWidget that will be used as an editor for this field.

file_filter When the user is able to select a file or filename, use this filter to limit the available files.

length The maximum number of characters that can be entered in a text field.

7.2. Commercial 133

Camelot Documentation, Release

minimum The minimum allowed value for Integer and Float delegates or their related delegates like the Star
delegate.

maximum The maximum allowed value for Integer and Float delegates or their related delegates like the Star
delegate.

precision The numerical precision that will be used to display Float values, this is unrelated to the precision in
which they are stored.

choices A function taking as a single argument the object to which the field belongs. The function returns a list of
tuples containing for each possible choice the value to be stored on the model and the value displayed to the user.

The use of choices forces the use of the ComboBox delegate:

field_attributes = {’state’:{’choices’:lambda o:[(1, ’Active’),
(2, ’Passive’)]}}

minimal_column_width An integer specifying the minimal column width when this field is displayed in a table
view. The width is expressed as the number of characters that should fit in the column:

field_attributes = {’name’:{’minimal_column_width’:50}}

will make the column wide enough to display at least 50 characters. The user will still be able to reduce the column
size manually.

prefix String to display before a number

remove_original True or False

Set to True when a file should be deleted after it has been transfered to the storage.

single_step The size of a single step when the up and down arrows are used in on a float or an integer field.

suffix String to display after a number

tooltip A function taking as a single argument the object to which the field belongs. The function should return a
string that will be used as a tooltip. The string may contain html markup.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

def dynamic_tooltip_x(coordinate):
return u’The x value of the coordinate, now set to %s’%(coordinate.x)

def dynamic_tooltip_y(coordinate):
return u’The y value of the coordinate, now set to %s’%(coordinate.y)

class Coordinate(object):

def __init__(self):
self.id = 1

134 Chapter 7. Support

Camelot Documentation, Release

self.x = 0.0
self.y = 0.0

class Admin(ObjectAdmin):
form_display = [’x’, ’y’,]
field_attributes = dict(x=dict(delegate=delegates.FloatDelegate,

tooltip=dynamic_tooltip_x),
y=dict(delegate=delegates.FloatDelegate,

tooltip=dynamic_tooltip_y),
)

form_size = (100,100)

doc/../_static/snippets/fields_with_tooltips.png

translate_content True or False

Wether the content of a field should be translated before displaying it. This only works for displaying content, not
while editing it.

background_color A function taking as a single argument the object to which the field belongs. The function should
return None if the default background should be used, or a QColor to be used as the background.

"""This Admin class turns the background of a Person’s first
name pink if its first name doesn’t start with a capital"""

from PyQt4.QtGui import QColor

from camelot.model.party import Person

def first_name_background_color(person):
import string
if person.first_name:

if person.first_name[0] not in string.uppercase:
return QColor(’pink’)

class Admin(Person.Admin):
field_attributes = {’first_name’:{’background_color’:first_name_background_color}}

doc/../_static/snippets/background_color.png

name The name of the field used, this defaults to the name of the attribute

target In case of relation fields, specifies the class that is at the other end of the relation. Defaults to the one found by
introspection. This can be used to let a many2one editor always point to a subclass of the one found by introspection.

7.2. Commercial 135

Camelot Documentation, Release

admin In case of relation fields, specifies the admin class that is to be used to visualize the other end of the relation.
Defaults to the default admin class of the target class. This can be used to make the table view within a one2many
widget look different from the default table view for the same object.

address_type Should be None or one of the Virtual Address Types, like ‘phone’ or ‘email’. When specified, it
indicates that a VirtualAddressEditor should only accept addresses of the specified type.

Customizing multiple field attributes When multiple field attributes need to be customized, specifying the
field_attributes dictionary can become inefficient.

Several methods of the camelot.admin.object_admin.ObjectAdmin class can be overwritten to take care
of this.

Instead of filling the field_attributes dictionary manually, the :method:‘camelot.admin.object_admin.ObjectAdmin.get_field_attributes‘
method can be overwritten :

When multiple dynamic field attributes need to execute the same logic to determine their value, it can be more efficient
to overwrite the method :method:‘camelot.admin.object_admin.ObjectAdmin.get_dynamic_field_attributes‘ and
execute the logic once there and set the value for all dynamic field attributes at once.

The complement of get_dynamic_field_attributes is :method:‘camelot.admin.object_admin.ObjectAdmin.get_static_field_attributes‘.

Validators Before an object is written to the database it needs to be validated, and the user needs to be informed in
case the object is not valid.

By default Camelot does some introspection on the model to check the validity of an object, to make sure it will be
able to write the object to the database.

But this might not be enough. If more validation is needed, a custom Validator class can be defined. The default
camelot.admin.validator.entity_validator.EntityValidator can be subclassed to create a cus-
tom validator. The new class should then be bound to the Admin class :

from camelot.admin.validator.entity_validator import EntityValidator
from camelot.admin.entity_admin import EntityAdmin

class PersonValidator(EntityValidator):

def objectValidity(self, entity_instance):
messages = super(PersonValidator,self).objectValidity(entity_instance)
if (not entity_instance.first_name) or (len(entity_instance.first_name) < 3):

messages.append("A person’s first name should be at least 2 characters long")
return messages

class Admin(EntityAdmin):
verbose_name = ’Person’
list_display = [’first_name’, ’last_name’]
validator = PersonValidator

Its most important method is objectValidity, which takes an object as argument and should return a list of strings
explaining why the object is invalid. These strings will then be presented to the user.

Notice that this method will always get called outside of the GUI thread, so the call will never block the GUI.

When the user tries to leave a form in an invalid state, a platform dependent dialog box will appear.

136 Chapter 7. Support

Camelot Documentation, Release

doc/../_static/snippets/entity_validator.png

Customizing the Application

The ApplicationAdmin controls how the application behaves, it determines the sections in the left pane, the availabil-
ity of help, the about box, the menu structure, etc.

The Application Admin Each Camelot application should subclass camelot.admin.application_admin.ApplicationAdmin
and overwrite some of its methods.

The look of the main window Most of these methods are based on the concept of Actions.

• camelot.admin.application_admin.ApplicationAdmin.get_sections()

• camelot.admin.application_admin.ApplicationAdmin.get_actions()

• camelot.admin.application_admin.ApplicationAdmin.get_toolbar_actions()

• camelot.admin.application_admin.ApplicationAdmin.get_main_menu()

Interaction with the Operating System

• camelot.admin.application_admin.ApplicationAdmin.get_organization_name()

• camelot.admin.application_admin.ApplicationAdmin.get_organization_domain()

• camelot.admin.application_admin.ApplicationAdmin.get_name()

• camelot.admin.application_admin.ApplicationAdmin.get_version()

The look of the application

• camelot.admin.application_admin.ApplicationAdmin.get_splashscreen()

• camelot.admin.application_admin.ApplicationAdmin.get_stylesheet()

• camelot.admin.application_admin.ApplicationAdmin.get_translator()

• camelot.admin.application_admin.ApplicationAdmin.get_icon()

The content of the help menu

• camelot.admin.application_admin.ApplicationAdmin.get_about()

• camelot.admin.application_admin.ApplicationAdmin.get_help_url()

Default behavior of the application

• camelot.admin.application_admin.ApplicationAdmin.get_related_admin()

7.2. Commercial 137

Camelot Documentation, Release

The look of the form views

• camelot.admin.application_admin.ApplicationAdmin.get_related_toolbar_actions()

• camelot.admin.application_admin.ApplicationAdmin.get_form_actions()

• camelot.admin.application_admin.ApplicationAdmin.get_form_toolbar_actions()

Example
class MyApplicationAdmin(ApplicationAdmin):

name = ’Camelot Video Store’

begin sections
def get_sections(self):

from camelot.model.batch_job import BatchJob
from camelot.model.memento import Memento
from camelot.model.party import (Person, Organization,

PartyCategory)
from camelot.model.i18n import Translation
from camelot.model.batch_job import BatchJob, BatchJobType

from camelot_example.model import Movie, Tag, VisitorReport
from camelot_example.view import VisitorsPerDirector

begin import action
from camelot_example.importer import ImportCovers

end import action

return [
begin section with action

Section(_(’Movies’),
self,
Icon(’tango/22x22/mimetypes/x-office-presentation.png’),
items = [Movie,

Tag,
VisitorReport,

VisitorsPerDirector,
ImportCovers()]),

end section with action
Section(_(’Relation’),

self,
Icon(’tango/22x22/apps/system-users.png’),
items = [Person,

Organization,
PartyCategory]),

Section(_(’Configuration’),
self,
Icon(’tango/22x22/categories/preferences-system.png’),
items = [Memento,

Translation,
BatchJobType,
BatchJob
])

]
end sections

begin actions
def get_actions(self):

138 Chapter 7. Support

Camelot Documentation, Release

from camelot.admin.action import OpenNewView
from camelot_example.model import Movie

new_movie_action = OpenNewView(self.get_related_admin(Movie))
new_movie_action.icon = Icon(’tango/22x22/mimetypes/x-office-presentation.png’)

return [new_movie_action]
end actions

Example of a reduced application By reimplementing the default get_sections(), get_main_menu() and
get_toolbar_actions(), it is possible to create a completely differently looking Camelot application.

_static/controls/reduced_main_window.png

def get_toolbar_actions(self, toolbar_area):
from PyQt4.QtCore import Qt
from camelot.model.party import Person
from camelot.admin.action import application_action, list_action
from model import Movie

movies_action = application_action.OpenTableView(self.get_related_admin(Movie))
movies_action.icon = Icon(’tango/22x22/mimetypes/x-office-presentation.png’)
persons_action = application_action.OpenTableView(self.get_related_admin(Person))
persons_action.icon = Icon(’tango/22x22/apps/system-users.png’)

if toolbar_area == Qt.LeftToolBarArea:
return [movies_action,

persons_action,
list_action.OpenNewView(),
list_action.OpenFormView(),
list_action.DeleteSelection(),
application_action.Exit(),]

def get_actions(self):
return []

def get_sections(self):
return None

def get_main_menu(self):
return None

def get_stylesheet(self):
from camelot.view import art
return art.read(’stylesheet/black.qss’)

Creating Forms

This section describes how to place fields on forms and applying various layouts. It also covers how to customize
forms to your specific needs. As with everything in Camelot, the goal of the framework is that you can create 80%

7.2. Commercial 139

Camelot Documentation, Release

of your forms with minimal effort, while the framework should allow you to really customize the other 20% of your
forms.

Form A form is a collection of fields organized within a layout. Each field is represented by its editor.

Usually forms are defined by specifying the form_display attribute of an Admin class :

from sqlalchemy.schema import Column
from sqlalchemy.types import Unicode, Date
from camelot.admin.entity_admin import EntityAdmin
from camelot.core.orm import Entity
from camelot.view import forms

class Movie(Entity):
title = Column(Unicode(60), nullable=False)
short_description = Column(Unicode(512))
releasedate = Column(Date)

class Admin(EntityAdmin):
form_display = forms.Form([’title’, ’short_description’, ’releasedate’])

doc/../_static/form/form.png

The form_display attribute should either be a list of fields to display or an instance of camelot.view.forms.Form or its
subclasses.

Forms can be nested into each other :

from camelot.admin.entity_admin import EntityAdmin
from camelot.view import forms
from camelot.core.utils import ugettext_lazy as _

class Admin(EntityAdmin):
verbose_name = _(’person’)
verbose_name_plural = _(’persons’)
list_display = [’first_name’, ’last_name’,]
form_display = forms.TabForm([(’Basic’, forms.Form([’first_name’, ’last_name’, ’contact_mechanisms’,])),

(’Official’, forms.Form([’birthdate’, ’social_security_number’, ’passport_number’,
’passport_expiry_date’,’addresses’,])),])

doc/../_static/form/nested_form.png

Inheritance and Forms Just as Entities support inheritance, forms support inheritance as well. This avoids dupli-
cation of effort when designing and maintaining forms. Each of the Form subclasses has a set of methods to modify
its content. In the example below a new tab is added to the form defined in the previous section.

140 Chapter 7. Support

Camelot Documentation, Release

from copy import deepcopy

from camelot.view import forms
from nested_form import Admin

class InheritedAdmin(Admin):
form_display = deepcopy(Admin.form_display)
form_display.add_tab(’Work’, forms.Form([’employers’, ’directed_organizations’, ’shares’]))

doc/../_static/form/inherited_form.png

Putting notes on forms

doc/../_static/editors/NoteEditor.png

A note on a form is nothing more than a property with the NoteDelegate as its delegate and where the widget is inside
a WidgetOnlyForm.

In the case of a Person, we display a note if another person with the same name already exists :

def note(self):
for person in self.__class__.query.filter_by(first_name=self.first_name, last_name=self.last_name):

if person != self:
return _(’A person with the same name already exists’)

Available Form Subclasses The camelot.view.forms.Form class has several subclasses that can be used to
create various layouts. Those can be found in the camelot.view.forms module. Each subclass maps to a Qt
Layout class.

Customizing Forms Several options exist for completely customizing the forms of an application.

Layout When the desired layout cannot be achieved with Camelot’s form classes, a custom
camelot.view.forms.Form subclass can be made to layout the widgets.

When subclassing the Form class, it’s render method should be reimplemented to put the labels and the editors in a
custom layout. The render method will be called by Camelot each time it needs the form. It should thus return a
QtGui.QWidget to be used as the needed form.

The render method its first argument is the factory class camelot.view.controls.formview.FormEditors,
through which editors and labels can be constructed. The editor widgets are bound to the data model.

from PyQt4 import QtGui

from camelot.view import forms
from camelot.admin.entity_admin import EntityAdmin

7.2. Commercial 141

Camelot Documentation, Release

class CustomForm(forms.Form):

def __init__(self):
super(CustomForm, self).__init__([’first_name’, ’last_name’])

def render(self, editor_factory, parent = None, nomargins = False):
widget = QtGui.QWidget(parent)
layout = QtGui.QFormLayout()
layout.addRow(QtGui.QLabel(’Please fill in the complete name :’, widget))
for field_name in self.get_fields():

field_editor = editor_factory.create_editor(field_name, widget)
field_label = editor_factory.create_label(field_name, field_editor, widget)
layout.addRow(field_label, field_editor)

widget.setLayout(layout)
widget.setBackgroundRole(QtGui.QPalette.ToolTipBase)
widget.setAutoFillBackground(True)
return widget

class Admin(EntityAdmin):
list_display = [’first_name’, ’last_name’]
form_display = CustomForm()
form_size = (300,100)

The form defined above puts the widgets into a QtGui.QFormLayout using a different background color, and adds
some instructions for the user :

doc/../_static/form/custom_layout.png

Editors The editor of a specific field can be changed, by specifying an alternative QtGui.QItemDelegate for
that field, using the delegate field attributes, see Specifying delegates.

Tooltips Each field on the form can be given a dynamic tooltip, using the tooltip field attribute, see tooltip.

Buttons Buttons bound to a specific action can be put on a form, using the form_actions attribute, attribute of the
Admin class : Form Actions.

Validation Validation is done at the object level. Before a form is closed validation of the bound object takes place,
an invalid object will prevent closing the form. A custom validator can be defined : Validators

Actions

Introduction Besides displaying and editing data, every application needs the functions to manipulate data or create
reports. In Camelot this is done through actions. Actions can appear as buttons on the side of a form or a table, as
icons in a toolbar or as icons in the home workspace.

142 Chapter 7. Support

Camelot Documentation, Release

_static/entityviews/new_view_address.png

Every Action is build up with a set of Action Steps. An Action Step is a reusable part of an Action, such as for
example, ask the user to select a file. Camelot comes with a set of standard Actions and Action Steps that are easily
extended to manipulate data or create reports.

When defining Actions, a clear distinction should be made between things happening in the model thread (the manipu-
lation or querying of data), and things happening in the gui thread (pop up windows or reports). The The Two Threads
section gives more detail on this.

Summary In general, actions are defined by subclassing the standard Camelot
camelot.admin.action.Action class

from camelot.admin.action import Action
from camelot.view.action_steps import PrintHtml
from camelot.core.utils import ugettext_lazy as _
from camelot.view.art import Icon

class PrintReport(Action):

verbose_name = _(’Print Report’)
icon = Icon(’tango/16x16/actions/document-print.png’)
tooltip = _(’Print a report with all the movies’)

def model_run(self, model_context):
yield PrintHtml(’Hello World’)

Each action has two methods, gui_run() and model_run(), one of them should be reimplemented in the subclass
to either run the action in the gui thread or to run the action in the model thread. The default Action.gui_run()
behavior is to pop-up a ProgressDialog dialog and start the model_run() method in the model thread.

model_run() in itself is a generator, that can yield ActionStep objects back to the gui, such as a PrintHtml.

The action objects can than be used a an element of the actions list returned by the
ApplicationAdmin.get_actions() method:

def get_actions(self):
from camelot.admin.action import OpenNewView
from camelot_example.model import Movie

new_movie_action = OpenNewView(self.get_related_admin(Movie))
new_movie_action.icon = Icon(’tango/22x22/mimetypes/x-office-presentation.png’)

return [new_movie_action]

or be used in the ObjectAdmin.list_actions or ObjectAdmin.form_actions attributes.

The Add an import wizard to an application tutorial has a complete example of creating and using and action.

What can happen inside model_run()

7.2. Commercial 143

Camelot Documentation, Release

yield events to the GUI Actions need to be able to send their results back to the user, or ask the user for additional
information. This is done with the yield statement.

Through yield, an Action Step is send to the GUI thread, where it creates user interaction, and sends it result back
to the ‘model_thread’. The model_thread will be blocked while the action in the GUI thread takes place, eg

yield PrintHtml(’Hello World’)

Will pop up a print preview dialog in the GUI, and the model_run method will only continue when this dialog is closed.

Events that can be yielded to the GUI should be of type camelot.admin.action.base.ActionStep. Action
steps are reusable parts of an action. Possible Action Steps that can be yielded to the GUI include:

• camelot.view.action_steps.change_object.ChangeObject

• camelot.view.action_steps.change_object.ChangeObjects

• camelot.view.action_steps.print_preview.PrintChart

• camelot.view.action_steps.print_preview.PrintPreview

• camelot.view.action_steps.print_preview.PrintHtml

• camelot.view.action_steps.print_preview.PrintJinjaTemplate

• camelot.view.action_steps.open_file.OpenFile

• camelot.view.action_steps.open_file.OpenStream

• camelot.view.action_steps.open_file.OpenJinjaTemplate

• camelot.view.action_steps.gui.CloseView

• camelot.view.action_steps.gui.MessageBox

• camelot.view.action_steps.gui.Refresh

• camelot.view.action_steps.gui.OpenFormView

• camelot.view.action_steps.gui.ShowPixmap

• camelot.view.action_steps.gui.ShowChart

• camelot.view.action_steps.select_file.SelectFile

• camelot.view.action_steps.select_object.SelectObject

keep the user informed about progress An camelot.view.action_steps.update_progress.UpdateProgress
object can be yielded, to update the state of the progress dialog:

This should be done regulary to keep the user informed about the progres of the action:

movie_count = Movie.query.count()

report = ’<table>’
for i, movie in enumerate(Movie.query.all()):

report += ’<tr><td>%s</td></tr>’%(movie.name)
yield UpdateProgress(i, movie_count)

report += ’</table>’

yield PrintHtml(report)

Should the user have pressed the Cancel button in the progress dialog, the next yield of an UpdateProgress object will
raise a camelot.core.exception.CancelRequest.

144 Chapter 7. Support

http://docs.python.org/dev/reference/simple_stmts.html#yield
http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

manipulation of the model The most important purpose of an action is to query or manipulate the model, all such
things can be done in the model_run() method, such as executing queries, manipulating files, etc.

Whenever a part of the model has been changed, it might be needed to inform the GUI about
this, so that it can update itself, the easy way of doing so is by yielding an instance of
camelot.view.action_steps.orm.FlushSession such as:

movie.rating = 5
yield FlushSession(model_context.session)

This will flush the session to the database, and at the same time update the GUI so that the flushed changes are shown
to the user by updating the visualisation of the changed movie on every screen in the application that displays this
object. Alternative updates that can be generated are :

• camelot.view.action_steps.orm.UpdateObject, if one wants to inform the GUI an object has
been updated.

• camelot.view.action_steps.orm.DeleteObject, if one wants to inform the GUI an object is go-
ing to be deleted.

• camelot.view.action_steps.orm.CreateObject, if one wants to inform the GUI an object has
been created.

raise exceptions When an action fails, a normal Python Exception can be raised, which will pop-up an exception
dialog to the user that displays a stack trace of the exception. In case no stack trace should be shown to the user, a
camelot.core.exception.UserException should be raised. This will popup a friendly dialog :

_static/controls/user_exception.png

When the model_run() method raises a camelot.core.exception.CancelRequest, a
GeneratorExit or a StopIteration exception, these are ignored and nothing will be shown to the
user.

handle exceptions In case an unexpected event occurs in the GUI, a yield statement will raise a
camelot.core.exception.GuiException. This exception will propagate through the action an will be
ignored unless handled by the developer.

request information from the user The pop-up of a dialog that presents the user with a number of options can be
triggered from within the model_run() method. This happens by transferring an options object back and forth
between the model_thread and the gui_thread. To transfer such an object, this object first needs to be defined:

class Options(object):

def __init__(self):
self.earliest_releasedate = datetime.date(2000, 1, 1)
self.latest_releasedate = datetime.date.today()

class Admin(ObjectAdmin):
form_display = [’earliest_releasedate’, ’latest_releasedate’]
field_attributes = { ’earliest_releasedate’:{’delegate’:delegates.DateDelegate},

’latest_releasedate’:{’delegate’:delegates.DateDelegate}, }

7.2. Commercial 145

http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

Than a camelot.view.action_steps.change_object.ChangeObject action step can be yield to
present the options to the user and get the filled in values back :

from PyQt4 import QtGui
from camelot.view import action_steps
options = NewProjectOptions()
yield action_steps.UpdateProgress(text = ’Request information’)
yield action_steps.ChangeObject(options)

Will show a dialog to modify the object:

_static/actionsteps/change_object.png

When the user presses Cancel button of the dialog, the yield statement will raise a
camelot.core.exception.CancelRequest.

Other ways of requesting information are :

• camelot.view.action_steps.select_file.SelectFile, to request to select an existing file to
process or a new file to save information.

Issue SQLAlchemy statements Camelot itself only manipulates the database through objects of the ORM for the
sake of make no difference between objects mapped to the database and plain old python objects. But for performance
reasons, it is often desired to do manipulations directly through SQLAlchemy ORM or Core queries :

model_context.session.query(BatchJobType).update(values = {’name’:’accounting audit’},
synchronize_session = ’evaluate’)

States and Modes

States The widget that is used to trigger an action can be in different
states. A camelot.admin.action.base.State object is returned by the
camelot.admin.action.base.Action.get_state method. Subclasses of Action can reimplement
this method to change the State of an action button.

This allows to hide or disable the action button, depending on the objects selected or the current object being displayed.

Modes An action widget can be triggered in different modes, for example a print button can be triggered as Print or
Export to PDF. The different modes of an action are specified as a list of camelot.admin.action.base.Mode
objects.

To change the modes of an Action, either specify the modes attribute of an Action or specify the modes attribute
of the State returned by the Action.get_state() method.

Action Context Depending on where an action was triggered, a different context will be
available during its execution in camelot.admin.action.base.Action.gui_run() and
camelot.admin.action.base.Action.model_run().

The minimal context available in the GUI thread when gui_run() is called :

While the minimal contact available in the Model thread when model_run() is called :

146 Chapter 7. Support

http://docs.python.org/dev/reference/simple_stmts.html#yield
http://docs.python.org/dev/reference/simple_stmts.html#yield

Camelot Documentation, Release

Application Actions To enable Application Actions for a certain ApplicationAdmin overwrite its
ApplicationAdmin.get_actions() method:

from camelot.admin.application_admin import ApplicationAdmin
from camelot.admin.action import Action

class GenerateReports(Action):

verbose_name = _(’Generate Reports’)

def model_run(self, model_context):
for i in range(10):

yield UpdateProgress(i, 10)

class MyApplicationAdmin(ApplicationAdmin)

def get_actions(self):
return [GenerateReports(),]

An action specified here will receive an ApplicationActionGuiContext object as the gui_context argument of
the the gui_run() method, and a ApplicationActionModelContext object as the model_context argument
of the model_run() method.

Form Actions A form action has access to the object currently visible on the form.

class BurnToDisk(Action):

verbose_name = _(’Burn to disk’)

def model_run(self, model_context):
yield action_steps.UpdateProgress(0, 3, _(’Formatting disk’))
time.sleep(0.7)
yield action_steps.UpdateProgress(1, 3, _(’Burning movie’))
time.sleep(0.7)
yield action_steps.UpdateProgress(2, 3, _(’Finishing’))
time.sleep(0.5)

To enable Form Actions for a certain ObjectAdmin or EntityAdmin, specify the form_actions attribute.

#
create a list of actions available for the user on the form view
#
form_actions = [BurnToDisk()]

_static/entityviews/new_view_movie.png

An action specified here will receive a FormActionGuiContext object as the gui_context argument of
the gui_run() method, and a FormActionModelContext object as the model_context argument of the
model_run() method.

List Actions A list action has access to both all the rows displayed in the table (called the collection) and the rows
selected by the user (called the selection) :

7.2. Commercial 147

Camelot Documentation, Release

class ChangeRatingAction(Action):
"""Action to print a list of movies"""

verbose_name = _(’Change Rating’)

def model_run(self, model_context):
#
the model_run generator method yields various ActionSteps
#
options = Options()
yield ChangeObject(options)
if options.only_selected:

iterator = model_context.get_selection()
else:

iterator = model_context.get_collection()
for movie in iterator:

yield UpdateProgress(text = u’Change %s’%unicode(movie))
movie.rating = min(5, max(0, (movie.rating or 0) + options.change))

#
FlushSession will write the changes to the database and inform
the GUI
#
yield FlushSession(model_context.session)

To enable List Actions for a certain ObjectAdmin or EntityAdmin, specify the list_actions attribute:

#
the action buttons that should be available in the list view
#
list_actions = [ChangeRatingAction()]

This will result in a button being displayed on the table view.

_static/entityviews/table_view_movie.png

An action specified here will receive a ListActionGuiContext object as the gui_context argument of th
the gui_run() method, and a ListActionModelContext object as the model_context argument of the
model_run() method.

Reusing List and Form actions There is no need to define a different action subclass for form and list actions, as
both their model_context have a get_selection method, a single action can be used both for the list and the form.

Available actions Camelot has a set of available actions that combine the various ActionStep subclasses. Those
actions can be used directly or as an inspiration to build new actions:

• camelot.admin.action.application_action.OpenNewView

• camelot.admin.action.application_action.OpenTableView

• camelot.admin.action.application_action.ShowHelp

• camelot.admin.action.application_action.ShowAbout

148 Chapter 7. Support

Camelot Documentation, Release

• camelot.admin.action.application_action.Backup

• camelot.admin.action.application_action.Restore

• camelot.admin.action.application_action.Refresh

• camelot.admin.action.form_action.CloseForm

• camelot.admin.action.list_action.CallMethod

• camelot.admin.action.list_action.OpenFormView

• camelot.admin.action.list_action.OpenNewView

• camelot.admin.action.list_action.ToPreviousRow

• camelot.admin.action.list_action.ToNextRow

• camelot.admin.action.list_action.ToFirstRow

• camelot.admin.action.list_action.ToLastRow

• camelot.admin.action.list_action.ExportSpreadsheet

• camelot.admin.action.list_action.PrintPreview

• camelot.admin.action.list_action.SelectAll

• camelot.admin.action.list_action.ImportFromFile

• camelot.admin.action.list_action.ReplaceFieldContents

Inspiration

• Implementing actions as generators was made possible with the language functions of PEP 342.

• The EuroPython talk of Erik Groeneveld inspired the use of these features.
(http://ep2011.europython.eu/conference/talks/beyond-python-enhanched-generators)

• Action steps were introduced to be able to take advantage of the new language features of PEP 380 in Python
3.3

Documents and Reports

Generate documents Generating reports and documents is an important part of any application. Python and Qt
provide various ways to generate documents. Each of them with its own advantages and disadvantages.

Method Advantages Disadvantages
PDF documents through report-
lab • Perfect control over layout

• Excellent for mass creation
of documents

• Relatively steep learning
curve

• User cannot edit document

HTML
• Easy to get started
• Print preview within

Camelot
• No dependencies

• Not much layout control
• User cannot edit document

Docx Word documents
• User can edit document • Proprietary format

• Word processor needed

7.2. Commercial 149

http://www.python.org/dev/peps/pep-0342
http://ep2011.europython.eu/conference/talks/beyond-python-enhanched-generators
http://www.python.org/dev/peps/pep-0380

Camelot Documentation, Release

Camelot leaves all options open to the developer.

Please have a look at Creating a Report with Camelot to get started with generating documents.

Generating a document or report is nothing more than yielding the appropriate action step during the model_run()
method of an Action.

Action steps usable for reporting are :

• camelot.view.action_steps.print_preview.PrintPreview

• camelot.view.action_steps.print_preview.PrintHtml

• camelot.view.action_steps.print_preview.PrintJinjaTemplate

• camelot.view.action_steps.open_file.OpenFile

• camelot.view.action_steps.open_file.OpenStream

• camelot.view.action_steps.open_file.OpenJinjaTemplate

HTML based documents
class MovieSummary(Action):

verbose_name = _(’Summary’)

def model_run(self, model_context):
from camelot.view.action_steps import PrintHtml
movie = model_context.get_object()
yield PrintHtml("<h1>This will become the movie report of %s!</h1>" % movie.title)

The supported html subset is documented here :

http://doc.qt.nokia.com/stable/richtext-html-subset.html

Alternative rendering Instead of QtGui.QTextDocument another html ren-
derer such as QtWebKit.QWebView can be used in combination with the
camelot.view.action_steps.print_preview.PrintPreview action step. The QWebView class has
complete support for html and css.

class WebkitPrint(Action):

def model_run(self, model_context):
from PyQt4.QtWebKit import QWebView
from camelot.view.action_steps import PrintPreview

movie = model_context.get_object()

document = QWebView()
document.setHtml(’<h2>%s</h2>’ % movie.title)

yield PrintPreview(document)

Docx based documents

Create a template document with MS Office Create a document using MS Office and with some placeholder text
on places where you want to insert data.

150 Chapter 7. Support

http://doc.qt.nokia.com/stable/richtext-html-subset.html

Camelot Documentation, Release

And save it as an xml file :

7.2. Commercial 151

Camelot Documentation, Release

Clean the XML generated by MS Office The XML file generated by MS Office can be cleaned using xmllint:

xmllint --format template.xml > template_clean.xml

Replace the placeholders The template will be merged with the objects in the selection using jinja, where the object
in the selection will be available as a variable named obj and the time of merging the document is available as now:

Delegates

Delegates are a cornerstone of the Qt model/delegate/view framework. A delegate is used to display and edit data from
a model.

In the Camelot framework, every field of an Entity has an associated delegate that specifies how the field will be
displayed and edited. When a new form or table is constructed, the delegates of all fields on the form or table will
construct editors for their fields and fill them with data from the model. When the data has been edited in the form,
the delegates will take care of updating the model with the new data.

All Camelot delegates are subclasses of QtGui.QAbstractItemDelegate.

The Qt website provides detailed information the differenct classes involved in the model/delegate/view framework.

152 Chapter 7. Support

http://www.qt-project.org

Camelot Documentation, Release

Specifying delegates The use of a specific delegate can be forced by using the delegate field attribute. Suppose
rating is a field of type integer, then it can be forced to be visualized as stars:

from camelot.view.controls import delegates

class Movie(Entity):
title = Column(Unicode(50))
rating = Column(Integer)

class Admin(EntityAdmin):
list_display = [’title’, ’rating’]
field_attributes = {’rating’:{’delegate’:delegates.StarDelegate}}

The above code will result in:

doc/../_static/editors/StarEditor_editable.png

If no delegate field attribute is given, a default one will be taken depending on the sqlalchemy field type.

All available delegates can be found in camelot.view.controls.delegates

Charts

To enable charts, Camelot is closely integrate with Matplotlib, one of the very high quality Python charting packages.

Often creating a chart involves gathering a lot of data, this needs to happen inside the model, to free the GUI from
such tasks. Once the data is gathered, it is put into a container, this container is then shipped to the gui thread, where
the chart is put on the screen.

doc/../_static/editors/ChartEditor_editable.png

A simple plot As shown in the example below, creating a simple plot involves two things :

1. Create a property that returns one of the chart containers, in this case the PlotContainer is used.

2. Specify the delegate to be used to visualize the property, this should be the ChartDelegate

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates
from camelot.container.chartcontainer import PlotContainer

class Wave(object):

def __init__(self):
self.amplitude = 1
self.phase = 0

@property

7.2. Commercial 153

http://www.matplotlib.org

Camelot Documentation, Release

def chart(self):
import math
x_data = [x/100.0 for x in range(1, 700, 1)]
y_data = [self.amplitude * math.sin(x - self.phase) for x in x_data]
return PlotContainer(x_data, y_data)

class Admin(ObjectAdmin):
form_display = [’amplitude’, ’phase’, ’chart’]
field_attributes = dict(amplitude = dict(delegate=delegates.FloatDelegate,

editable=True),
phase = dict(delegate=delegates.FloatDelegate,

editable=True),
chart = dict(delegate=delegates.ChartDelegate))

The PlotContainer object takes as its arguments, the same arguments that can be passed to the matplotlib plot com-
mand. The container stores all those arguments, and later passes them to the plot command executed within the gui
thread.

doc/../_static/snippets/simple_plot.png

The simpel chart containers map to their respective matplotlib command. They include :

Actions The PlotContainer and BarContainer can be used to print or display charts as part of an action through the
use of the appropriate action steps :

• camelot.view.action_steps.print_preview.PrintChart

• camelot.view.action_steps.gui.ShowChart

class ChartPrint(Action):

def model_run(self, model_context):
from camelot.container.chartcontainer import BarContainer
from camelot.view.action_steps import PrintChart
chart = BarContainer([1, 2, 3, 4],

[5, 1, 7, 2])
print_chart_step = PrintChart(chart)
print_chart_step.page_orientation = QtGui.QPrinter.Landscape
yield print_chart_step

Advanced Plots For more advanced plots, the camelot.container.chartcontainer.AxesContainer
class can be used. The AxesContainer class can be used as if it were a matplotlib Axes object. But when a method on
the AxesContainer is called it will record the method call instead of creating a plot. These method calls will then be
replayed by the gui to create the actual plot.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates
from camelot.container.chartcontainer import AxesContainer

class Wave(object):

def __init__(self):

154 Chapter 7. Support

Camelot Documentation, Release

self.amplitude = 1
self.phase = 2.89

@property
def chart(self):

import math
axes = AxesContainer()
x_data = [x/100.0 for x in range(1, 700, 1)]
y_data = [self.amplitude * math.sin(x - self.phase) for x in x_data]
axes.plot(x_data, y_data)
axes.grid(True)
axes.axvspan(self.phase-0.05, self.phase+0.05, facecolor=’b’, alpha=0.5)
return axes

class Admin(ObjectAdmin):
form_display = [’amplitude’, ’phase’, ’chart’]
field_attributes = dict(amplitude = dict(delegate=delegates.FloatDelegate,

editable=True),
phase = dict(delegate=delegates.FloatDelegate,

editable=True),
chart = dict(delegate=delegates.ChartDelegate))

doc/../_static/snippets/advanced_plot.png

More For more information on the various types of plots that can be created, have a look at the Matplotlib Gallery.

When the AxesContainer does not provide enough flexibility, for example when the plot
needs to manipulated through its object structure, more customization is possible by sub-
classing either the camelot.container.chartcontainer.AxesContainer or the
camelot.container.chartcontainer.FigureContainer :

Document Management

Camelot provides some features for the management of documents. Notice that documents managed by Camelot are
stored in a specific location (either an application directory on the local disk, a network share or a remote server).

This in contrast with some application that just store the link to a file in the database, and don’t store the file itself.

Three concepts are important for understanding how Camelot handles documents :

• The Storage : this is the place where Camelot stores its documents, by default this is a directory on the local
system. When a file is checked in into a storage, a StoredFile is returned. Files are checked out from the storage
by their StoredFile representation.

• The StoredFile : a stored file is a representation of a file stored in a storage. It does not contain the file itself but
its name and meta information.

• The File Field type : is a custom field type to write and read the StoredFile into the database. The actual name
of the StoredFile is the only thing stored in the database.

7.2. Commercial 155

http://matplotlib.sourceforge.net/gallery.html

Camelot Documentation, Release

The File field type Usually the first step when working with documents is to use the File field type somewhere in
the model definition. Alternatively the Image field type can be used if one only wants to store images in that field.

The StoredFile When the File field type is used in the code, it returns and accepts objects of type StoredFile.

The Image field type will return objects of type StoredImage.

The Storage This is where the actual file is stored. The default storage implementation simply represents a directory
on the file system.

Under the hood

A lot of things happen when a Camelot application starts up. In this section we give a brief overview of those which
might need to be adapted for more complex applications

Global settings Camelot has a global settings object of which the attributes are used throughout Camelot whenever
a piece of global configuration is needed. Examples of such global configuration are the location of the database and
the location of stored files and images. To access the global configuration, simply import the object

from camelot.core.conf import settings
print settings.CAMELOT_MEDIA_ROOT()

To manipulate the global configuration, create a class with the needed attributes and methods and append it to the
global configuration :

The settings object should have a method named ENGINE, uses the create_engine SQLAlchemy function to create a
connection to the database. Camelot provides a default sqlite URI scheme. But you can set your own.

def ENGINE(self):
from sqlalchemy import create_engine
return create_engine(u’sqlite:///%s/%s’%(self.data_folder,

self.data))

Older versions of Camelot looked for a settings module on sys.path to look for the global configuration. This approach
is still supported.

Setting up the ORM When the application starts up, the setup_model method of the Settings class is called. In this
function, all model files should be imported, to make sure the model has been completely setup. The importing of
these files is enough to define the mapping between objects and tables.

The import of these model definitions should happen before the call to create_all to make sure all models are known
before the tables are created.

Setting up the Database

Engine The Settings class should contain a method named ENGINE that returns a connection to the
database. Whenever a connection to the database is needed, this method will be called. The
camelot.core.conf.SimpleSettings has a default ENGINE method that returns an SQLite database in
a user directory.

156 Chapter 7. Support

http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine

Camelot Documentation, Release

Metadata SQLAlchemy defines the MetaData class. A MetaData object contains all the information about a
database schema, such as Tables, Columns, Foreign keys, etc. The camelot.core.sql contains the singleton
metadata object which is the default MetaData object used by Camelot. In the setup_model function, this metadata
object is bound to the database engine.

In case an application works with multiple database schemas in parallel, this step needs to be adapted.

Creating the tables By simply importing the modules which contain parts of the model definition, the needed table
information is added to the metadata object. At the end of the setup_model function, the create_all method is called
on the metadata, which will create the tables in the database if they don’t exist yet.

Working without the default model Camelot comes with a default model for Persons, Organizations, History
tracking, etc.

To turn these on or off, simply add or remove the import statements of those modules from the setup_model method
in the Settings class.

Transactions Transactions in Camelot can be used just as in normal SQLAlchemy. This means that inside a
camelot.admin.action.base.Action.model_run() method a transaction can be started and committed

with model_context.session.begin()
...do some modifications...

More information on the transactional behavior of the session can be found in the SQLAlchemy documentation ...

Using Camelot without the GUI Often a Camelot application also has a non GUI part, like batch scripts, server
side scripts, etc.

It is of course perfectly possible to reuse the whole model definition in those non GUI parts. The easiest way to do so
is to leave the Camelot GUI application as it is and then in the non GUI script, initialize the model first

from camelot.core.conf import settings
settings.setup_model()

From that point, all model manipulations can be done. Access to the single session can be obtained from anywhere
through the Session factory method

from camelot.core.orm import Session
session = Session()

After the manipulations to the model have been done, they can be flushed to the db

session.flush()

Built in data models

Camelot comes with a number of built in data models. To avoid boiler plate models needed in almost any application
(like Persons, Addresses, etc.), the developer is encouraged to use these data models as a start for developing custom
applications.

7.2. Commercial 157

http://docs.sqlalchemy.org/en/latest/orm/session.html#committing

Camelot Documentation, Release

Modules The camelot.model module contains a number of submodules, each with a specific purpose

To activate such a submodule, the submodule should be imported in the setup_model method of settings class, before
the tables are created

def setup_model(self):
from camelot.core.sql import metadata
metadata.bind = self.ENGINE()
from camelot.model import authentication
from camelot.model import party
from camelot.model import i18n
from camelot.core.orm import setup_all
setup_all(create_tables=True)

Persons and Organizations

I18N

Fixture

Authentication

Batch Jobs A batch job object can be used as a context manager :

from camelot.model.batch_job import BatchJob, BatchJobType
synchronize = BatchJobType.get_or_create(u’Synchronize’)
with BatchJob.create(synchronize) as batch_job:

batch_job.add_strings_to_message([u’Synchronize part A’,
u’Synchronize part B’])

batch_job.add_strings_to_message([u’Done’], color = ’green’)

Whenever an exception happens inside the with block, the stack trace of this exception will be written to the bach job
object and it’s status will be set to errors. At the end of the with block, the status of the batch job will be set to finished.

History tracking

Customization

Adding fields Sometimes the built in models don’t have all the fields or relations required for a specific application.
Fortunately it is possible to add fields to an existing model on a per application base.

To do so, simply assign the required fields in the application specific model definition, before the tables are created.

party.Person.language = schema.Column(types.Unicode(30))

metadata.create_all()
p = party.Person(first_name = u’Peter’,

last_name = u’Principle’,
language = u’English’)

session.flush()

158 Chapter 7. Support

Camelot Documentation, Release

Fixtures : handling static data in the database

Some tables need to be filled with default data when users start to work with the application. The Camelot fixture
module camelot.model.fixture assist in handling this kind of data.

Suppose we have an entity PartyCategory to divide Persons and Organizations into certain groups.

The complete definition of such an entity can be found in camelot.model.authentication.PartyCategory.

To make things easier for the first time user, some prefab categories should be available when the user starts the
application. Such as Suspect, Prospect, VIP.

When to update fixtures Most of the time static data should be created or updated right after the model has been
set up and before the user starts using the application.

The easiest place to do this is in the setup_model method inside the settings.py module.

So we rewrite settings.py to include a call to a new update_fixtures method:

def update_fixtures():
"""Update static data in the database"""
from camelot.model.fixture import Fixture
from model import MovieType

def setup_model():
from camelot.model import *
from camelot.model.memento import *
from camelot.model.synchronization import *
from camelot.model.authentication import *
from camelot.model.i18n import *
from camelot.model.fixture import *
from model import *
setup_all(create_tables=True)
updateLastLogin()
update_fixtures()

Creating new data When creating new data with the fixture module, a reference to the created data will be stored
in the fixture table along with a ‘fixture key’. This fixture key can be used later to retrieve or update the created data.

So lets create some new movie types:

def update_fixtures():
"""Update static data in the database"""
from camelot.model.fixture import Fixture
from model import MovieType
Fixture.insertOrUpdateFixture(MovieType,

fixture_key = ’comic’,
values = dict(name=’Comic’))

Fixture.insertOrUpdateFixture(MovieType,
fixture_key = ’scifi’,
values = dict(name=’Science Fiction’))

Fixture keys should be unique for each Entity class.

7.2. Commercial 159

Camelot Documentation, Release

Update fixtures When a new version of the application gets released, we might want to change the static data and
add some icons to the movie types. Thanks to the ‘fixture key’, it’s easy to retrieve and update the already inserted
data, just modify the update_fixtures function:

def update_fixtures():
"""Update static data in the database"""
from camelot.model.fixture import Fixture
from model import MovieType
Fixture.insertOrUpdateFixture(MovieType,

fixture_key = ’comic’,
values = dict(name=’Comic’, icon=’spiderman.png’))

Fixture.insertOrUpdateFixture(MovieType,
fixture_key = ’scifi’,
values = dict(name=’Science Fiction’, icon=’light_saber.png’))

The fixture version In case lots of data needs to be read into the database (like a list of postal codeds), it might make
no sense to create a new fixture for each code, instead a fixture version number can be set to indicate a list has been
read into the database. The camelot.model.fixture.FixtureVersion exists to facilitate this.

import csv
if FixtureVersion.get_current_version(u’demo_data’) == 0:

reader = csv.reader(open(example_file))
for line in reader:

Person(first_name = line[0], last_name = line[1])
FixtureVersion.set_current_version(u’demo_data’, 1)
session.flush()

Managing a Camelot project

Once a project has been created and set up as described in the tutorial Creating a Movie Database Application, it needs
to be maintained and managed over time.

The command line tool camelot_admin.py exist to assist in the management of Camelot projects.

camelot_admin.py

The Two Threads

Most users of Camelot won’t need the information in this Chapter and can simply enjoy building applications that
don’t freeze. However, if you start customizing your application beyond developing custom delegates, this information
might be crucial to you.

Introduction A very important aspect of any GUI application is the speed with which it responds to the user’s
request. While it is acceptable that some actions take some time to complete, an application freezing for even half a
second makes the user feel uncomfortable.

From an application developer’s point of view, potential freezes are everywhere (open a file, access a database, do
some calculations), so we need a structural approach to get rid of them.

Two different approaches are possible. The first approach is split all possibly blocking operations into small parts and
hook everything together with events. This is the approach taken in some of the QT classes (eg.: the network classes)
or in the Twisted framework. The second approach is to use multiple threads of execution and make sure the blocking
operations run in another thread than the GUI.

160 Chapter 7. Support

Camelot Documentation, Release

Events :

• No multi-threaded programming needed : no deadlocks etc.

• Every single library you use must support this approach

Multiple threads :

• Scary : potential race conditions and deadlocks

• Can be used with existing libraries

The Camelot framework was developed using the multi-threaded approach. This allows to build on top of a large
number of existing libraries (sqlalchemy, PIL, numpy,...) that don’t support the event based approach.

Two Threads To keep the problems associated with multi-threaded programming under control, Camelot runs only
two threads for its basic operations. Those threads don’t share any data with each other and exchange information
using a message queue (the way Erlang advocates). This ensures there are no deadlocks or race conditions.

The first thread, called the GUI Thread contains the QT widgets and runs the QT event loop. No blocking operations
should take place in this thread. The second thread contains all the data, like objects mapped to the database by
sqlalchemy, and is called the Model Thread.

This approach keeps the problem of application freezes under control, it won’t speed up your application when certain
actions take a long time, but it will ensure the gui remains responsive during those actions.

The Model Thread Since every single operation on a data model is potentially blocking (eg : getting an attribute of
a class mapped to the database by sqlalchemy might trigger a query to the database which might be overloaded at that
time), the whole data model lives in a separate thread and every operation on the data model should take place within
this thread.

To keep things simple and avoid the use of locks and data synchronization between threads, there is only one such
thread, called the Model Thread.

Other threads that want to interact with the model can post operations to the model thread using its queue

from camelot.view.model_thread import get_model_thread

mt = get_model_thread()
mt.post(my_operation)

where ‘my_operation’ is a function that will then be executed within the model thread.

The GUI Thread Now that all potentially blocking operations have been move to the model thread, we have a GUI
Thread that never blocks. But the GUI thread will need some data from the model to present to the user.

The GUI thread gets its data by posting an operation to the Model Thread that strips some data from the model, this
data will then be posted by the Model thread to the GUI thread.

Suppose we want to display the name of the first person in the database in a QLabel

from camelot.view.model_thread import get_model_thread
from PyQt4 import QtGui

class PersonLabel(QtGui.QLabel):

def __init__(self):
QtGui.QLabel.__init__(self)
mt = get_model_thread()
mt.post(self.strip_data_from_model, self.put_data_on_label)

7.2. Commercial 161

Camelot Documentation, Release

def strip_data_from_model(self):
from camelot.model.authentication import Person
return Person.query.first().name

def put_data_on_label(self, name):
self.setText(name)

When the strip_data_from_model method is posted to the Model Thread, it will be executed within the Model Thread
and its result (the name of the person) will be posted back to the GUI thread. Upon arrival of the name in the GUI
thread the function put_data_on_label will be executed within the GUI thread with as its first argument the name.

In reality, the stripping of data from the model and presenting this data to the gui is taken care off by the proxy classes
in camelot.view.proxy.

Actions

Proxy classes

Application speedup

162 Chapter 7. Support

Camelot Documentation, Release

Frequently Asked Questions

How to use the PySide bindings instead of PyQt ? The Camelot sources as well as the example videostore appli-
cation can be converted from PyQt applications to PySide with the camelot_admin tool.

Download the sources and position the shell in the main directory, and then issue these commands:

python camelot/bin/camelot_admin.py to_pyside .

This will create a subdirectory ‘to_pyside’ which contains the converted source code.

Can I use Camelot with an existing database ? Both Declarative and Camelot can be used with an existing schema.
However, since Camelot acts on objects, the classes for those objects still need to be defined.

Here’s a short example of using camelot with an existing database :

from sqlalchemy.engine import create_engine
from sqlalchemy.pool import StaticPool

engine = create_engine(’sqlite:///test.sqlite’)
#
Create a table in the database using plain old sql
#
connection = engine.connect()
try:

connection.execute("""drop table person""")
except:

pass
connection.execute("""create table person (pk INTEGER PRIMARY KEY,

first_name TEXT NOT NULL,
last_name TEXT NOT NULL)""")

connection.execute("""insert into person (first_name, last_name)
values ("Peter", "Principle")""")

#
Use declarative to reflect the table and create classes
#
from camelot.admin.entity_admin import EntityAdmin
from camelot.core.sql import metadata
from sqlalchemy.schema import Table
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base(metadata = metadata)

class Person(Base):
__table__ = Table(’person’, Base.metadata,

autoload=True, autoload_with=engine)

class Admin(EntityAdmin):
list_display = [’first_name’, ’last_name’]

#
Setup a camelot application
#
from camelot.admin.application_admin import ApplicationAdmin
from camelot.admin.section import Section
from camelot.core.conf import settings

7.2. Commercial 163

Camelot Documentation, Release

class AppAdmin(ApplicationAdmin):

def get_sections(self):
return [Section(’All tables’, self, items = [Person])]

class Settings(object):

def ENGINE(self):
return engine

def setup_model(self):
metadata.bind = engine

settings.append(Settings())
app_admin = AppAdmin()

#
Start the application
#
if __name__ == ’__main__’:

from camelot.view.main import main
main(app_admin)

More information on using Declarative with an existing database schema can be found in the Declarative documenta-
tion.

Why is there no Save button ? Early on in the development process, the controversial decision was made not to
have a Save button in Camelot. Why was that ?

• User friendlyness. One of the major objectives of Camelot is to be user friendly. This also means we should
reduce the number of ‘clicks’ a user has to do before achieving something. We believe the ‘Save’ click is an
unneeded click. The application knows when the state of a form is valid for persisting it to the database, and can
do so without user involvement. We also want to take the ‘saving’ issue out of the mind of the user, he should
not bother wether his work is ‘saved’, it simply is.

• Technical. Once you decide to use a Save button, you need to ask yourself where you will put that button
and what its effect will be. This question becomes difficult when you want to enable the user to edit a complex
datastructure with one-to-many and many-to-many relations. Most applications solve this by limiting the options
for the user. For example, most accounting packages will not allow you to create a new customer when you are
creating a new invoice. Because when you save the invoice, should the customer be saved as well ? Or should
the customer have it’s own save button ? Those packages therefor require the user to first create a customer, and
only then can an invoice be created. These are limitation we don’t want to impose with Camelot.

• Consistency between editing in table or form view. We wanted the table view to be really easy to edit (to behave
a bit like a spreadsheet), so it’s easy for the user to do bulk updates. As such the user should not be bothered by
pressing the Save button all the time. If there is no need to save in the table view, there should be no need in the
form view either.

Some couter arguments for this decision are :

• But what if the user wants to ‘modify’ a form and not save those changes ? This is indeed something that is
not possible without a Save and it accompanying Cancel button. But this is something a developer will do a lot
while testing an application, but is outside of the normal workflow of a user. Most users typically want to enter
or modify as much data as possible, they are not testing the application to see how it would behave on certain
data input.

• A form should be validated before it is saved. In an application there are two levels of validation. The first
level is to validate before something is persisted into the database, this can be done in Camelot using a custom

164 Chapter 7. Support

http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html#using-reflection-with-declarative

Camelot Documentation, Release

implementation of a camelot.admin.validator.entity_validator.EntityValidator. The
second level is a validation before the entered data can be used in the business process. To do this second
level validation, one can use state changes (Action buttons that change the state of a form, eg from ‘Draft’ to
‘Complete’). A good example of this is when entering a booking into an accounting package. When a booking
is entered, it can only be used when debit equals credit. What would happen when this validation is done at
the moment the form is ‘saved’. Suppose a user has been working for the better part of the day on a complex
booking, but is not done yet at the end of the day. Since he cannot yet save his work he has two options, discard
it and restart the next day, or enter some bogus data to be able to save it. What will happen in the later case
when his manager is creating a report a bit later. So the correct situation in this case is having your work saved
at all times, and to put your booking from a ‘draft’ state to a ‘complete’ state once its ready. This state change
will then check if debit equals credit.

Two years after we made this move, Apple decided to follow our example : http://www.apple.com/macosx/whats-
new/auto-save.html

But my users really want a Save button ? We advise you to listen very well to the arguments the user has for
wanting a Save button. You will be able to solve most of them by using state changes instead of a Save button. The
other arguments probably have to do with expections users have from using other applications, as for those simply ask
the users to try to work for a week without a Save button and get back to you if after that week, they still have issues
with it. Please let us know when they do !

Advanced Topics

This is documentation for advanced usage of the Camelot library.

Internationalization

The Camelot translation system is a very small wrapper around the Qt translation system. Internally, it uses the
QCoreApplication.translate() method to do the actual translation.

On top of that, it adds the possibility for end users to change translations theirselves. Those translations are stored in
the database. This mechanism can be used to adapt the vocabulary of an application to that of a specific company.

How to Specify Translation Strings Translation strings specify “This text should be translated.”. It’s your respon-
sibility to mark translatable strings; the system can only translate strings it knows about.

from camelot.core.utils import ugettext as _

message = _("Hello brave new world")

The above example translates the given string immediately. This is not always desired, since the message catalog
might not yet be loaded at the time of execution. Therefore translation strings can be specified as lazy. They will only
get translated when they are used in the GUI.

from camelot.core.utils import ugettext_lazy as _

message = _("This translation is delayed")

Translation strings in model definitions should always be specified as lazy translation strings. Only lazy translation
strings can be translated by the end user in various forms.

7.2. Commercial 165

http://www.apple.com/macosx/whats-new/auto-save.html
http://www.apple.com/macosx/whats-new/auto-save.html

Camelot Documentation, Release

Translating Camelot itself To extract translation files from the Camelot source code, Babel needs to be installed.

In the root folder of the Camelot source directory.

First update the translation template:

python setup.py extract_messages

If your language directory does not yet exists in ‘camelot/art/translations’:

python setup.py init_catalog --locale nl

If it allready exists, update it from the translation template:

python setup.py update_catalog

In the language subdirectory of ‘camelot/art/translations’, there is a subdirectory ‘LC_MESSAGES’ which contains
the .po translation file. This translation file can then be translated with linguist

linguist camelot.po

And edit it :

Make sure to save them back as GNU gettext .po files.

Then the .po file should be converted to a .qm file to make it loadable at run time:

lrelease camelot.po

Don’t forget to post your new .po file on the mailing list, so it can be included in the next release.

For more background information, please have a look at the Babel Documentation

Where to put Translations Translations can be put in 2 places :

• in po files which have to be loaded at application startup

166 Chapter 7. Support

http://babel.edgewall.org/
http://babel.edgewall.org/wiki/Documentation/setup.html

Camelot Documentation, Release

• in the Translation table : this table is editable by the users via the Configuration menu. This is the place to put
translations that should be editable by the users. At application startup, all records in this table related to the
current language will be put in memory.

Loading translations Translations are loaded when the application starts. To
enforce the loading of the correct translation file, one should overwrite the
camelot.admin.application_admin.ApplicationAdmin.get_translator() method. This
method should return the proper QtCore.QTranslator object.

End user translations Often it is convenient to let the end user create or update the translations of an application,
this allows the end user to put a lot of domain knowledge into the application.

Therefore, all lazy translation strings can be translated by the end user. When the user right-clicks on a label in a form,
he can select Change translation from the menu and update the current translation (for the current language). This
effectively updates the content of the Translation table.

After some time the developer can take a copy of this table and decide to put these translations in po files.

Unittests

Release default

Date April 23, 2013

Deployment

After developing a Camelot application comes the need to deploy the application, either at a central location or in a
distributed setup.

7.2. Commercial 167

Camelot Documentation, Release

Building .egg files Whatever the deployment setup is, it is almost always a good idea to distribute your application
as a single .egg file, containing as much as possible the dependencies that are likely to change often during the lifetime
of the application. Resource files (like icons or templates can be included in this .egg file as well).

Building .egg files is a relatively straightforward process using setuptools.

When a new Camelot project was created with camelot_admin, a setup.py file was made that is able to build eggs
using this command

python -O setup.py bdist_egg --exclude-source-files

Note: The advantage of using .egg files comes when updating the application, simply replacing a single .egg file at a
central location is enough to migrate all your users to the new version.

Windows deployment

Through CloudLaunch CloudLaunch is a service to ease the deployment and update process of Python applica-
tions. It’s main features are :

• Building Windows Installers

• Updating deployed applications

• Monitoring of deployed applications

As CloudLaunch is build on top of setuptools, it works with .egg files, CloudLaunch works cross platform, so it’s
perfectly possible to build a Windows installer, or update a Windows application from Linux.

To build a .egg file that can be deployed through CloudLaunch, use the command:

python.exe setup.py bdist_cloud

This will create 2 files in the dist/cloud folder, a traditional .egg file and a .cld file. The .egg file is a normal .egg file
with some additional metadata included, and without sources. The .cld file contains metadata of the .egg file, such as
its checksum, and information on how get updated versions of the .egg once deployed.

To make sure the application will run smoothly once deployed, one should test if the generated .egg and .cld combi-
nation works:

cd dist\cloud
cloudlaunch.exe --cld-file movie_store.cld
cd ..\..

If this is working, a Windows installer can be build:

python.exe setup.py bdist_cloud wininst_cloud

This will generate a movie_store.exe file in distcloud, which is an installer for your application. The end user can now
install and run your application on his machine.

Now is the time to monitor the application as it runs on the end user machine:

python.exe setup.py monitor_cloud

Will display all the logs issued on the end user machine if that machine is connected to the internet.

When development of the application continues, it will be needed to present the user with an updated version of the
application. This is done with the command:

168 Chapter 7. Support

Camelot Documentation, Release

python.exe setup.py bdist_cloud upload_cloud

This will send an updated .egg and .cld file to the central repository, where the end-user application will check for
updates. If such an update is detected, the application will download the new egg and run from that one.

Using .egg files First of all python needs to be available on the machines that are going to run the application. The
easies way to achieve this is by installing the Conceptive Python Distribution (CPD) on the target machine. This
Python distribution can be installed in End user mode, which means the user will not notice it is installed.

Notice that for python to be available, it not necessarily needs to be installed on every machine that runs the application.
Installing python on a shared disk of a central server might just be enough.

Also put the .egg file on a shared drive.

Then, the easiest way to proceed is to put a little .vbs bootstrap script on the shared drive and put shortcuts to it on the
desktops of the users. The .vbs script can look like this:

Set WshShell = WScript.CreateObject("WScript.Shell")
WshShell.Environment("Process").item("PYTHONPATH") = "R:\movie_store-01.01-py2.7.egg;"
WshShell.Run """C:\Program Files\CPD\pythonw.exe"" -m movie_store.main"

Linux deployment The application can be launched by putting the .egg in the PYTHONPATH and starting python
with the -m option:

7.2. Commercial 169

http://www.python-camelot.com/cpd.html

Camelot Documentation, Release

export PYTHONPATH = /mnt/r/movie_store-01.01-py2.7.egg
python.exe -m movie_store.main

Don’t forget that all dependencies for your application should be installed on the system or put in the PYTHONPATH

Authentication and permissions

fine grained authentication and authorization is not yet included as part of the Camelot framework.

what is included is the function :

camelot.model.authentication.get_current_authentication()

which returns an object of type :class:‘camelot.model.authentication.AuthenticationMechanism

where the username is the username of the currently logged in user (because on most desktop apps, you don’t want a
separate login process for your app, but rely on that of the OS).

this function can then be used if you build the Admin classes for your application :

• set the editable field attribute to a function that only returns Thrue when the current authentication requires
editing of fields

• in the ApplicationAdmin.get_sections method, to hide/show sections depending on the logged in user

• in the EntityAdmin subclasses, in the get_field_attributes method, to set fields to editable=False/True depending
on the logged in user

Development Guidlines

Date April 23, 2013

Python, PyQt and Qt objects Python and Qt both have their own way of tracking objects and deleting them when
they are no longer needed :

• Python does reference counting supported by a garbage collector.

• Qt has parent child relations between objects. When a parent object is deleted, all its child objects are deleted
as well.

PyQt merges these two concepts by introducing ownership of objects :

• Pure python objects are owned by Python, Python takes care of their deletion.

• Qt objects wrapped by Python are either:

– owned by Qt when they have a parent object, Qt will delete them, when their parent object is deleted

– owned by Python when they have no parent, Python will delete them, and trigger the deletion of all their
children by Qt

• Qt objects that are not wrapped by Python, those are in one way or another children of a Qt object that is wrapped
by Python, they will get deleted by Qt.

The difficult case in this scheme is the case where Qt objects are wrapped by Python but have a parent object. This
can happen in two ways :

• A Qt object is created in python, but with a parent

170 Chapter 7. Support

Camelot Documentation, Release

from PyQt4 import QtCore

parent = QtCore.QObject()
child = QtCore.QObject(parent=parent)

In this case PyQt is able to track when the object is deleted by Qt and raises exceptions accordingly when a
method of underlying Qt object is called after the deletion

parent = QtCore.QObject()
child = QtCore.QObject(parent=parent)
del parent
print child.objectName()

will raise a RuntimeError: underlying C/C++ object has been deleted.

• A Qt object is returned from a Qt function that created the object without Python being aware of it. When the
object is passed as a return value PyQt will wrap it as a Python object, but is unable to track when Qt deletes it

from PyQt4 import QtGui
app = QtGui.QApplication([])
window = QtGui.QMainWindow()
statusbar = window.statusBar()
del window
statusbar.objectName()

Will result in a segmentation fault.

A segmentation fault will happen in several cases :

• Python tries to delete a Qt object already deleted by Qt

• PyQt calls a function of a Qt object already deleted

• Qt calls a function of a Qt object already deleted by Python

In principle, PyQt is able to handle all cases where the object has been created by Python. However, when this
ownership tracking is combined with threading and signal slot connections, a lot of corner cases arise in both Qt and
PyQt.

To play on safe, these guidelines are used when developing Camelot :

• Never keep a reference to objects created by Qt having a parent, so only use:

window.statusBar().objectName()

• Keep references to Qt child objects as short as possible, and never beyond the scope of a method call. This is
possible because qt allows objects to have a name.

so instead of doing

from PyQt4 import QtGui

class Parent(QtGui.QWidget):

def __init__(self):
super(Parent, self).__init__()
self._child = QtGui.QLabel(parent=self)

def do_something(self):
print self._child.objectName()

this is done

7.2. Commercial 171

Camelot Documentation, Release

from PyQt4 import QtGui

class Parent(QtGui.QWidget):

def __init__(self):
super(Parent, self).__init__()
child = QtGui.QLabel(parent=self)
child.setObjectName(’label’)

def do_something(self):
child = self.findChild(QtGui.QWidget, ’label’)
if child != None:

print child.objectName()

should the child object have been deleted by Qt, the findChild method will return None, and a segmentation
fault is prevented. An explicit check for None is needed, since even if the widget exists, it might evaluate to 0
or an empty string.

Debugging Camelot and PyQt

Log the SQL Queries Configure SQLAlchemy to log all queries:

logging.getLogger(’sqlalchemy.engine’).setLevel(logging.DEBUG)

Enable core dumps

Linux For older gdb versions (pre 7), copy the gdbinit file from the python Misc folder:

cp gdbinit ~/.gdbinit

use:

ulimit -c unlimited

load core file in gdb:

gdb /usr/bin/python -c core

In newer gdb versions, Python can run inside gdb:

http://bugs.python.org/issue8032

To give gdb python super powers:

(gdb) python
>import sys
>sys.path.append(’Python-2.7.1/Tools/gdb/libpython.py’)
>import libpython
>reload(libpython)
>
>end

https://fedoraproject.org/wiki/Features/EasierPythonDebugging

172 Chapter 7. Support

http://bugs.python.org/issue8032
https://fedoraproject.org/wiki/Features/EasierPythonDebugging

Camelot Documentation, Release

Windows

• Install Debugging tools for Windows from MSDN

Install ‘Debug Diagnostic Tool’

http://stackoverflow.com/questions/27742/finding-the-crash-dump-files-for-a-c-app

http://blogs.msdn.com/b/tess/

Setup Qt Creator

http://doc.qt.nokia.com/qtcreator-snapshot/creator-debugger-engines.html

• Install Windows Sysinternals process utilities from MSDN

http://technet.microsoft.com/en-us/sysinternals/bb795533

Camelot, Qt, PyQt Licenses

Camelot License

Camelot is Copyright (C) 2007-2013 Conceptive Engineering bvba. www.conceptive.be /
info@conceptive.be

You may use, distribute and copy Camelot under the terms of GNU General Public License version 2,
which is displayed below.

A commercial license can be obtained from Conceptive Engineering bvba Please mail to
info@conceptive.be for inquiries.

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software–to make sure
the software is free for all its users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free Software Foundation software
is covered by the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the software.

7.2. Commercial 173

http://stackoverflow.com/questions/27742/finding-the-crash-dump-files-for-a-c-app
http://blogs.msdn.com/b/tess/
http://doc.qt.nokia.com/qtcreator-snapshot/creator-debugger-engines.html
http://technet.microsoft.com/en-us/sysinternals/bb795533
mailto:info@conceptive.be
mailto:info@conceptive.be

Camelot Documentation, Release

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty
for this free software. If the software is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors
of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copy-
right notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy of this License along with
the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from
the Program, and can be reasonably considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the

174 Chapter 7. Support

Camelot Documentation, Release

terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on
the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable
work, complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these
terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a

7.2. Commercial 175

Camelot Documentation, Release

patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the

original copyright holder who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among coun-
tries not thus excluded. In such case, this License incorporates the limitation as if written in the body of
this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published
by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY

176 Chapter 7. Support

Camelot Documentation, Release

OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C) <year> <name of
author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright dis-
claimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program
is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If
this is what you want to do, use the GNU Lesser General Public License instead of this License.

Large parts of the source in camelot/core/orm/ are based on the Elixir library (http://elixir.ematia.de).

The Elixir library was released under the MIT license, with the following copyright notice :

This is the MIT license: http://www.opensource.org/licenses/mit-license.php

Copyright (c) 2007, 2008 Jonathan LaCour, Daniel Haus, and Gaetan de Menten. and contributors. SQLAlchemy is a
trademark of Michael Bayer.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,

7.2. Commercial 177

http://elixir.ematia.de
http://www.opensource.org/licenses/mit-license.php

Camelot Documentation, Release

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

PyQt License

Qt License

Camelot’s Documentation Copyright

Copyright (C) 2007-2012 Conceptive Engineering bvba. All rights reserved. www.conceptive.be / project-
camelot@conceptive.be

This file is part of the Camelot Library.

This file may be used under the terms of the GNU General Public License version 2.0 as published by the
Free Software Foundation and appearing in the file LICENSE.GPL included in the packaging of this file.
Please review the following information to ensure GNU General Public Licensing requirements will be met:
http://www.trolltech.com/products/qt/opensource.html

If you are unsure which license is appropriate for your use, please review the following information:
http://www.trolltech.com/products/qt/licensing.html or contact project-camelot@conceptive.be.

This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN,
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

For use of this library in commercial applications, please contact project-camelot@conceptive.be

7.2.2 Camelot, Qt, PyQt Licenses

Camelot License

Camelot is Copyright (C) 2007-2013 Conceptive Engineering bvba. www.conceptive.be /
info@conceptive.be

You may use, distribute and copy Camelot under the terms of GNU General Public License version 2,
which is displayed below.

A commercial license can be obtained from Conceptive Engineering bvba Please mail to
info@conceptive.be for inquiries.

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

178 Chapter 7. Support

mailto:project-camelot@conceptive.be
mailto:project-camelot@conceptive.be
http://www.trolltech.com/products/qt/opensource.html
http://www.trolltech.com/products/qt/licensing.html
mailto:project-camelot@conceptive.be
mailto:project-camelot@conceptive.be
mailto:info@conceptive.be
mailto:info@conceptive.be

Camelot Documentation, Release

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software–to make sure
the software is free for all its users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free Software Foundation software
is covered by the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty
for this free software. If the software is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors
of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

7.2.3 GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copy-
right notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy of this License along with
the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for a fee.

7.2. Commercial 179

Camelot Documentation, Release

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from
the Program, and can be reasonably considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on
the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable
work, complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object code.

180 Chapter 7. Support

Camelot Documentation, Release

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these
terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the

original copyright holder who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among coun-
tries not thus excluded. In such case, this License incorporates the limitation as if written in the body of
this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published
by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.

7.2. Commercial 181

Camelot Documentation, Release

Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C) <year> <name of
author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items–whatever suits your program.

182 Chapter 7. Support

Camelot Documentation, Release

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright dis-
claimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program
is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If
this is what you want to do, use the GNU Lesser General Public License instead of this License.

Large parts of the source in camelot/core/orm/ are based on the Elixir library (http://elixir.ematia.de).

The Elixir library was released under the MIT license, with the following copyright notice :

This is the MIT license: http://www.opensource.org/licenses/mit-license.php

Copyright (c) 2007, 2008 Jonathan LaCour, Daniel Haus, and Gaetan de Menten. and contributors. SQLAlchemy is a
trademark of Michael Bayer.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

PyQt License

Qt License

7.2.4 Camelot’s Documentation Copyright

Copyright (C) 2007-2012 Conceptive Engineering bvba. All rights reserved. www.conceptive.be / project-
camelot@conceptive.be

This file is part of the Camelot Library.

This file may be used under the terms of the GNU General Public License version 2.0 as published by the
Free Software Foundation and appearing in the file LICENSE.GPL included in the packaging of this file.
Please review the following information to ensure GNU General Public Licensing requirements will be met:
http://www.trolltech.com/products/qt/opensource.html

If you are unsure which license is appropriate for your use, please review the following information:
http://www.trolltech.com/products/qt/licensing.html or contact project-camelot@conceptive.be.

This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN,
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

For use of this library in commercial applications, please contact project-camelot@conceptive.be

7.2. Commercial 183

http://elixir.ematia.de
http://www.opensource.org/licenses/mit-license.php
mailto:project-camelot@conceptive.be
mailto:project-camelot@conceptive.be
http://www.trolltech.com/products/qt/opensource.html
http://www.trolltech.com/products/qt/licensing.html
mailto:project-camelot@conceptive.be
mailto:project-camelot@conceptive.be

	What's new
	Release 13.04.13
	Release 12.06.29
	Release 11.12.30
	Release 11.12.29
	Release 11.11.16
	Release 11.09.10
	Release 11.05.13
	Release 10.11.27
	Release 10.07.02
	Release 09.12.07

	Tutorials
	Creating a Movie Database Application
	Creating a Report with Camelot
	Add an import wizard to an application

	Camelot Documentation
	Camelot Installation
	Creating models
	Admin classes
	Customizing the Application
	Creating Forms
	Actions
	Documents and Reports
	Delegates
	Charts
	Document Management
	Under the hood
	Built in data models
	Fixtures : handling static data in the database
	Managing a Camelot project
	The Two Threads
	Frequently Asked Questions

	Migrate existing Camelot projects
	Migrate from Camelot 11.12.30 to 12.06.29
	Migrate from Camelot 12.06.29 to 13.04.13

	Advanced Topics
	Internationalization
	Unittests
	Deployment
	Authentication and permissions
	Development Guidlines
	Debugging Camelot and PyQt

	Camelot Enhancement Proposals
	Unified Model Definition

	Support
	Community
	Commercial

