

 Navigation

 	
 index

 	
 next |

 	Camelot documentation

Welcome to Camelot’s documentation!

	Release:	default

	Date:	May 28, 2013

	What’s new

Contents:

	Tutorials
	Creating a Movie Database Application

	Creating a Report with Camelot

	Add an import wizard to an application

	Camelot Documentation
	Camelot Installation

	Creating models

	Admin classes

	Customizing the Application

	Creating Forms

	Actions

	Documents and Reports

	Delegates

	Charts

	Document Management

	Under the hood

	Built in data models

	Fixtures : handling static data in the database

	Managing a Camelot project

	The Two Threads

	Frequently Asked Questions

	Migrate existing Camelot projects
	Migrate from Camelot 11.12.30 to 12.06.29

	Migrate from Camelot 12.06.29 to 13.04.13

	Advanced Topics
	Internationalization

	Unittests

	Deployment

	Authentication and permissions

	Development Guidlines

	Debugging Camelot and PyQt

	Camelot Enhancement Proposals
	Unified Model Definition

Support

Community

Community support is available on the mailing list [http://groups.google.com/group/project-camelot].
Camelot is on Bitbucket [http://bitbucket.org/conceptive/camelot] to lower contribution efforts.

Commercial

Commercial support and training is available from Conceptive Engineering, the
main authors of Camelot :

Conceptive Engineering

L Van Bauwelstraat 16

2222 Heist-op-den-Berg

Belgium

info@conceptive.be

http://www.conceptive.be

VAT BE 0878 169 209

Priority support tickets can be purchased from the shop [http://www.python-camelot.com/shop.html].
Please contact us for support contracts.

Indices and tables:

	Index

	Module Index

	Search Page

Others:

	Complete Table of Contents
	Tutorials

	Camelot Documentation

	Advanced Topics

	Camelot, Qt, PyQt Licenses

	GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

	Camelot’s Documentation Copyright

	Camelot, Qt, PyQt Licenses
	Camelot License

	GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	PyQt License

	Qt License

	Camelot’s Documentation Copyright

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

What’s new

Release 13.04.13

	Uses SQLAlchemy 0.8.0

	All default models migrated from Elixir to Declarative

	Replacements for most of the Elixir functions that are compatible with
Declarative

	Search splits search strings between spaces and searches for a combination of the elements

	Russian translations

	The camelot.model.batch_job.BatchJob is reworked to have more robust error handling, and
a batch job becomes useable as a context manager

	Decouple the camelot.core.memento.SqlMemento from camelot.model.memento.Memento,
so the change tracking system becomes customizable.

	List of changes can be accessed from the form view

	Support for using an existing database through SQLAlchemy reflection

	Primary key columns are not editable by default

	Documents in print preview can be edited before printing

	Import and export have configurable columns

	Add camelot.view.action_steps.print_preview.PrintChart action step.

	Adapt printing of charts to matplotlib 1.0

	Fix maximum field attribute of rating fields in editor and delegate.

	Workaround for form window hiding on Mac

	The frozen columns feature has been removed in favor of the column groups

	The embedded form has been removed in favour of camelot.admin.object_admin.ObjectAdmin.get_compounding_objects()

	Unittests cover 80% of the code

	See Migrate from Camelot 12.06.29 to 13.04.13 for documentation on how to upgrade an
existing Camelot project to the latest version.

Release 12.06.29

	camelot_manage has been removed, since it did not contain essential functions
for the development of Camelot applications.

	Port the camelot_example application and Creating a Movie Database Application to Declarative

	Add a toolbar to the form view, configurable through
the camelot.admin.object_admin.ObjectAdmin.get_form_toolbar_actions() method.

	Move the progress widget from the removed status bar to the toolbar

	Add camelot.admin.table.ColumnGroup in the list view.

[image: _static/controls/column_group.png]

	See Migrate from Camelot 11.12.30 to 12.06.29 for documentation on how to upgrade an
existing Camelot project.

	Tracking of changes goes through the camelot.admin.object_admin.ObjectAdmin

	Cleanup of the default Camelot models :

	they can be used independently of each other

	Persons, Organizations, etc. have been moved to camelot.model.party

	Simplification of the underlying tables

	The default metadata was moved camelot.core.sql

	Store user changed column width in settings and column_width field attribute

	camelot.admin.not_editable_admin.not_editable_admin() has an actions argument

	Reworked searching for translation files

	Portuguese (Brazil) translations

	Workaround for mainwindow bug on OS X

Release 11.12.30

	Fix inclusion of stylesheets and templates in the egg

Release 11.12.29

	Import from file wizard supports importing excel files

	A number of new ActionStep classes that can be used in custom
Action classes or serve as an example :

	camelot.view.action_steps.change_object.ChangeObjects

	camelot.view.action_steps.gui.CloseView

	camelot.view.action_steps.gui.MessageBox

	camelot.view.action_steps.select_object.SelectObject

	Move the repository to gitorious

	The toolbar in the one-to-many and many-to-many editor are configurable
using the ObjectAdmin.get_related_toolbar_actions() method.

	Spanish translations

	Possibility to add a close button to a form and to customize the form
close action

	Filters can have a default value

	Main menu and toolbars are configurable in the ApplicationAdmin
through the use of actions, which allows creation of reduced main windows

	Rewrite of Camelot functions behind toolbars and menus to actions, resulting
in a number of Action classes with sample code :

	camelot.admin.action.application_action.ShowHelp

	camelot.admin.action.application_action.ShowAbout

	camelot.admin.action.application_action.Backup

	camelot.admin.action.application_action.Restore

	camelot.admin.action.form_action.CloseForm

	camelot.admin.action.list_action.OpenNewView

	camelot.admin.action.list_action.ToPreviousRow

	camelot.admin.action.list_action.ToNextRow

	camelot.admin.action.list_action.ToFirstRow

	camelot.admin.action.list_action.ToLastRow

	camelot.admin.action.list_action.ExportSpreadsheet

	camelot.admin.action.list_action.PrintPreview

	camelot.admin.action.list_action.SelectAll

	camelot.admin.action.list_action.ImportFromFile

	camelot.admin.action.list_action.ReplaceFieldContents

	Move to SQLAlchemy 7.x

	Undefer all fields that are going to be used in a view when querying the
database

	Reduction of the lines of code with 4%

Release 11.11.16

	Implementation of the new actions proposal (Actions), please
consult the documentation and the tutorial (Add an import wizard to an application) of the
actions to ease the migration. Most old style actions can be replaced with
the new style action camelot.admin.action.list_action.CallMethod

	Delayed creation of widgets on tabs to improve performance for
screens with lots of fields

	Move to migrate 7.1

	New splashscreen

	Italian translations

	PySide compatibility

Release 11.09.10

	Refresh reexecutes queries in the table view

	Deleted entities are grayed out in the GUI if they are deleted when
visible

	Add setup.py to new projects for easy packaging

	The settings mechanism becomes plugable

	Print preview does pdf export when no printer is available

	Wizard to create a new project

[image: _static/actionsteps/change_object.png]

	API documentation integrated with sphinx

	camelot.core.exception.UserException, a subclass of Exception that
can be used to inform the user in a gentle way he should behave different.

[image: _static/controls/user_exception.png]

	Reduced memory usage

	Experimental PySide support

	Table views are sorted by primary key to avoid row flicker

	German, French and Dutch translations

	Generation of .po files integrated with setuptools

	Fixes of VirtualAddress editor

	example renamed to camelot_example to resolve naming conflicts with other
projects

Release 11.05.13

	Faster opening of forms

	‘Home’ tab with application actions

	add legend function to chart container

	Workspace maximizes when double clicking on tab bar

	Fix tab behavour of some editors

	Support for editing columns in the frozen part of a table view

	New DateTime Editor

[image: _static/editors/DateTimeEditor_editable.png]

	More intuitive Code editor

	More intuitive navigation pane

[image: _static/controls/navigation_pane.png]

	progress dialog when records are deleted

	FileEditor supports removing files after copying them

	EntityAdmin changes

	supports objects mapped with plain SQLAlchemy, documentation on how
to use this

	confirm_delete reworked to delete_mode

	expanded_list_search option to tune which fields show up

	ApplicationAdmin changes

	actions_changed_signal

	application actions show up in desktop workspace

[image: _static/controls/desktop_workspace.png]

	postgres support for backup / restore

	new actions : DocxApplicationAction, PixmapFormAction

	Most editors now support background_color, editable and tooltip
as dynamic attributes

Release 10.11.27

	Tab based desktop

	Faster table view

	Improved search queries

	Much more dynamic field attributes : tooltip, background_color, editable,
choices, prefix, suffix, arrow

	Document merge wizard

	Support for SQLAlchemy 0.6.x

	Charts and matplotlib integration

[image: _static/editors/ChartEditor_editable.png]

	Move from PyExcelerator to xlwt and xlrd

	Move to new style signal/slot connections

	Support for frozen columns in a table view

	Faster backup and restore

Release 10.07.02

	Expanded search and filter options

[image: _static/controls/header_widget.png]

	Search works for integer, date and float fields

[image: _static/controls/search_control.png]

	Sorting in table views and OneToMany widgets

	Importer forces validation before importing

	User translatable labels on forms

	Litebox image preview for image fields

	New editors and delegates :

	NoteDelegate

[image: _static/editors/NoteEditor_editable.png]

	LabelDelegate

	TextBoolDelegate

	i18n improvements

	Fix date editor on windows

	Add a default model to store batch job information

	Backup and restore available from the File menu

	More documentation

Release 09.12.07

	Sqlalchemy 5.6 compatible

	Dynamic background colors and tooltips

[image: _static/snippets/background_color.png]

	Generic import wizard

	The busy indicator in the status bar

	Support for lazy translations

	Remove PIL dependency and only depend on QImage

	Support multiple levels of class inheritance in the model

	Various bugfixes, usability and speed improvements

	Code cleanup

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

Tutorials

This section contains various tutorials that will help the reader get a
feeling of Camelot. We assume that the reader has some knowledge of Python [http://www.python.org].

The reader can read the following sub-sections in any order.

	Creating a Movie Database Application
	Setup Spyder

	Starting a new Camelot project

	Main Window and Views

	Creating the Movie Model

	The EntityAdmin Subclass

	Configuring the Application

	Relationships

	Creating a Report with Camelot
	Massaging the model

	The Summary class

	Using Jinja templates

	Add an import wizard to an application
	Introduction

	Create an action

	Add the action to the GUI

	Select the files

	Create new movies

	Refresh the GUI

	Result

	Unit tests

	Conclusion

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Tutorials

Creating a Movie Database Application

In this tutorial we will create a fully functional movie database application
with Camelot. We assume Camelot is properly installed.
An all in one installer for Windows is available as an SDK to develop Camelot
applications (Python SDK) [http://www.conceptive.be/python-sdk.html].

Setup Spyder

In this section, we will explain how to setup the Spyder IDE for developing
a Camelot project. If you are not using Spyder, you can skip this and
jump to the next section.

Start ‣ All Programs ‣ Python SDK ‣ Spyder

Within Spyder, open the Project Explorer :

View ‣ Windows and toolbars ‣ Project explorer

In the Project Explorer change the workspace directory, to the directory where
you want to put your Camelot Projects.

[image: ../_images/start-spyder.png]
Next, still in the Project Explorer, right click to create a new project using :

New Project

Enter Videostore as the project name.

[image: ../_images/spyder-new-project.png]

Starting a new Camelot project

We begin with the creation of a new Camelot project, using the camelot_admin tool :

Start ‣ All Programs ‣ Python SDK ‣ New Camelot Application

Note

From the command prompt (or shell), go to the directory in which the new project should be created.
Type the following command:

python -m camelot.bin.camelot_admin

A dialog appears where the basic information of the application can be filled in.
Select the newly created Videostore directory as the location of the source code.

[image: ../_images/camelot-new-project.png]
Press OK to generate the source code of the project.
The source code should now appear in the selected directory.

Main Window and Views

To run the application, double click on the main.py file in Spyder, which contains the entry point of your Camelot application and run this file.

Run ‣ Run ‣ Ok

Note

From the command prompt, simply start the script

python main.py

your Qt [http://www.qt-project.org] GUI should look like the one we show in the picture below:

[image: ../_images/main-window.png]
The application has a customizable menu and toolbar, a left navigation pane, and a central
area, where default the Home tab is opened, on which nothing is currently displayed.

The navigation pane has its first section expanded.

[image: ../_images/navigation-pane.png]
The navigation pane uses Sections to group Actions.
Each button in the navigation pane represents a Section, and each entry of the navigation tree is an Action.
Most standard Actions open a single table view of an Entity in a new tab.

Notice that the application disables most of the menus and the toolbar
buttons. When we open a table view, more options become available.

Entities are opened in the active tab, unless
they are opened by selecting Open in New Tab from the context menu (right click)
of the entity link, which will obviously open a new tab to right.
Tabs can be closed by clicking the X in the tab itself.

[image: ../_images/table-view.png]
Each row is a record with some fields that we can edit (others might not be
editable). Let’s now add a new row by clicking on the new icon (icon farthest the
the left in the toolbar above the navigation pane).

[image: ../_images/toolbar.png]
We now see a new window, containing a form view with additional fields.
Forms label required fields in bold.

[image: ../_images/new-form.png]
Fill in a first and last name, and close the form. Camelot will automatically
validate and echo the changes to the database. We can reopen the form by
clicking on the blue folder icon in the first column of each row of the table. Notice
also that there is now an entry in our table.

[image: ../_images/new-record.png]
That’s it for basic usages of the interface. Next we will write code for our
database model.

Creating the Movie Model

Let’s first take a look at the main.py in our project directory.
It contains a my_settings object which is appended to the global settings.
The Global settings object contains the global configuration for things such as database and file location.

Now we can look at model.py. Camelot has already imported some classes
for us. They are used to create our entities. Let’s say we want a movie entity
with a title, a short description, a release date, and a
genre.

The aforementioned specifications translate into the following Python code,
that we add to our model.py module:

from sqlalchemy import Unicode, Date
from sqlalchemy.schema import Column
from camelot.core.orm import Entity
from camelot.admin.entity_admin import EntityAdmin

class Movie(Entity):

 __tablename__ = 'movie'

 title = Column(Unicode(60), nullable = False)
 short_description = Column(Unicode(512))
 release_date = Column(Date())
 genre = Column(Unicode(15))

Note

The complete source code of this tutorial can be found in the
camelot_example folder of the Camelot source code.

Movie inherits camelot.core.orm.Entity, which is the declarative base class for all objects that should be stored in the database.
We use the __tablename__ attribute to to name the table ourselves in which the data will be stored, otherwise a default tablename would have been used.

Our entity holds four fields that are stored in columns in the table.

title = Column(Unicode(60), nullable = False)

title holds up to 60 unicode characters, and cannot be left empty:

short_description = Column(Unicode(512))

short_description can hold up to 512 characters:

release_date = Column(Date())
genre = Column(Unicode(15))

release_date holds a date, and genre up to 15 unicode characters:

For more information about defining models, refer to the SQLAlchemy Declarative extension [http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html].

The different SQLAlchemy [http://www.sqlalchemy.org] column types used are described here [http://docs.sqlalchemy.org/en/rel_0_7/core/types.html].
Finally, custom Camelot fields are documented in the section camelot-column-types.

Let’s now create an EntityAdmin subclass

The EntityAdmin Subclass

We have to tell Camelot about our entities, so they show up in the
GUI.
This is one of the purposes of camelot.admin.entity_admin.EntityAdmin
subclasses. After adding the EntityAdmin subclass, our Movie class now
looks like this:

class Movie(Entity):

 __tablename__ = 'movie'

 title = Column(Unicode(60), nullable = False)
 short_description = Column(Unicode(512))
 release_date = Column(Date())
 genre = Column(Unicode(15))

 def __unicode__(self):
 return self.title or 'Untitled movie'

 class Admin(EntityAdmin):
 verbose_name = 'Movie'
 list_display = ['title', 'short_description', 'release_date', 'genre']

We made Admin an inner class to strengthen the link between it and the
Entity subclass. Camelot does not force us. Assign your EntityAdmin
class to the Admin Entity member to put it somewhere else.

verbose_name will be the label used in navigation trees.

The last attribute is interesting; it holds a list containing the fields we
have defined above. As the name suggests, list_display tells Camelot to
only show the fields specified in the list. list_display fields are also
taken as the default fields to show on a form.

In our case we want to display four fields: title, short_description,
release_date, and genre (that is, all of them.)

The fields displayed on the form can optionally be specified too in the form_display
attribute.

We also add a __unicode__() method that will return either the title of the
movie entity or 'Untitled movie' if title is empty. The __unicode__()
method will be called in case Camelot needs a textual representation of an
object, such as in a window title.

Let’s move onto the last piece of the puzzle.

Configuring the Application

We are now working with application_admin.py.
One of the tasks of application_admin.py is to specify the sections in the left pane of the main window.

The created application has a class, MyApplicationAdmin.
This class is a subclass of camelot.admin.application_admin.ApplicationAdmin, which is used to control the overall look and feel of every Camelot application.

To change sections in the left pane of the main window, simply overwrite the get_sections method, to return a list of the desired sections.
By default this method contains:

def get_sections(self):
 from camelot.model.memento import Memento
 from camelot.model.i18n import Translation
 return [Section(_('My classes'),
 self,
 Icon('tango/22x22/apps/system-users.png'),
 items = []),
 Section(_('Configuration'),
 self,
 Icon('tango/22x22/categories/preferences-system.png'),
 items = [Memento, Translation])
]

which will display two buttons in the navigation pane, labelled 'My classes'
and 'Configurations', with the specified icon next to each label. And yes,
the order matters.

We need to add a new section for our Movie entity, this is done by
extending the list of sections returned by the get_sections method with a
Movie section:

from videostore.model import Movie
return [Section(_('Movie'),
 self,
 Icon('tango/22x22/apps/system-users.png'),
 items = [Movie]),
 Section(_('Configuration'),
 self,
 Icon('tango/22x22/categories/preferences-system.png'),
 items = [Memento, Translation])
]

The constructor of a section object takes the name of the section, a reference
to the application admin object, the icon to be used and the items in the
section. The items is a list of the entities for which a table view should
shown.

Camelot comes with the Tango [http://tango.freedesktop.org/Tango_Icon_Library]
icon collection; we use a suitable icon for our movie section.

We can now try our application.

We see a new button the navigation pane labelled ‘Movies’. Clicking on it
fills the navigation tree with the only entity in the movies’s section.
Clicking on this tree entry opens the table view. And if we click on the blue
folder of each record, a form view appears as shown below.

[image: ../_images/movie-table.png]
That’s it for the basics of defining an entity and setting it for display in
Camelot. Next we look at relationships between entities.

Relationships

We will be using SQLAlchemy’s sqlalchemy.orm.relationship API. We’ll
relate a director to each movie. So first we need a Director entity. We
define it as follows:

class Director(Entity):

 __tablename__ = 'director'

 name = Column(Unicode(60))

Even if we define only the name column, Camelot adds an id column
containing the primary key of the Director Entity. It does so because we
did not define a primary key ourselves. This primary key is an integer number,
unique for each row in the director table, and as such unique for each
Director object.

Next, we add a reference to this primary key in the movie table, this is called
the foreign key. This foreign key column, called director_id will be an
integer number as well, with the added constraint that it can only contain
values that are present in the director table its id column.

Because the director_id column is only an integer, we need to add the
director attribute of type relationship. This will allow us to use
the director property as a Director object related to a Movie
object. The relationship attribute will find out about the director_id
column and use it to attach a Director object to a Movie object

from sqlalchemy.schema import ForeignKey
from sqlalchemy.orm import relationship

class Movie(Entity):

 __tablename__ = 'movie'

 title = Column(Unicode(60), nullable = False)
 short_description = Column(Unicode(512))
 release_date = Column(Date())
 genre = Column(Unicode(15))

 director_id = Column(Integer, ForeignKey('director.id'))
 director = relationship('Director',
 backref = 'movies')

 class Admin(EntityAdmin):
 verbose_name = 'Movie'
 list_display = ['title',
 'short_description',
 'release_date',
 'genre',
 'director']

 def __unicode__(self):
 return self.title or 'untitled movie'

We also inserted 'director' in list_display.

To be able to have the movies accessible from a director, a backref is
defined in the director relationship. This will result in a movies
attribute for each director, containing a list of movie objects.

Our Director entity needs an administration class as well. We will also
add __unicode__() method as suggested above. The entity now looks as
follows:

class Director(Entity):
 __tablename__ = 'director'

 name = Column(Unicode(60))

 class Admin(EntityAdmin):
 verbose_name = 'Director'
 list_display = ['name']
 form_display = list_display + ['movies']

 def __unicode__(self):
 return self.name or 'unknown director'

Note

Whenever the model changes, the database needs to be updated.
This can be done by hand, or by dropping and recreating the database (or deleting the sqlite file).
By default Camelot stores the data in an local directory specified by the operating system.
Look in the startup logs to see where they are stored on your system, look for a line like

[INFO] [camelot.core.conf] - store database and media in /home/username/.camelot/videostore

For completeness the two entities are once again listed below:

class Movie(Entity):

 __tablename__ = 'movie'

 title = Column(Unicode(60), nullable = False)
 short_description = Column(Unicode(512))
 release_date = Column(Date())
 genre = Column(Unicode(15))

 director_id = Column(Integer, ForeignKey('director.id'))
 director = relationship('Director',
 backref = 'movies')

 class Admin(EntityAdmin):
 verbose_name = 'Movie'
 list_display = ['title',
 'short_description',
 'release_date',
 'genre',
 'director']

 def __unicode__(self):
 return self.title or 'untitled movie'

class Director(Entity):
 __tablename__ = 'director'

 name = Column(Unicode(60))

 class Admin(EntityAdmin):
 verbose_name = 'Director'
 list_display = ['name']
 form_display = list_display + ['movies']

 def __unicode__(self):
 return self.name or 'unknown director'

The last step is to fix application_admin.py by adding the following
lines to the Director entity to the Movie section:

Section('Movies',
 self,
 Icon('tango/22x22/mimetypes/x-office-presentation.png'),
 items = [Movie, Director])

This takes care of the relationship between our two entities.

We have just learned the basics of Camelot, and have a nice movie database
application we can play with. In another tutorial, we will learn more advanced
features of Camelot.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Tutorials

Creating a Report with Camelot

With the Movie Database Application as our starting point, we’re going to use
the reporting framework in this tutorial. We will create a report of each
movie, which we can access from the movie detail page.

Massaging the model

First of all we need to create a button to access our report. This is easily
done by specifying a form_action, right in the Admin subclass of the model.
Our appended code will be:

form_actions = [MovieSummary()]

The action is described in the MovieSummary class, which we’ll discuss next.
Note that it needs to imported, obviously:

from movie_summary import MovieSummary

So the movie model admin will look like this:

class Admin(EntityAdmin):
 from movie_summary import MovieSummary
 verbose_name = _('Movie')
 list_display = [
 'title',
 'short_description',
 'release_date',
 'genre',
 'director'
]
 form_display = [
 'title',
 'cover_image',
 'short_description',
 'release_date',
 'genre',
 'director'
]
 form_actions = [
 MovieSummary()
]

The Summary class

In the MovieSummary class, which is a child class of
camelot.admin.action.base.Action, we need to override just one method;
the model_run() method, which has the model_context object as its
argument. This makes accessing the Movie object very easy as we’ll see in a
minute. The model_run method will yield ..., have a guess.... Exactly,
a print preview:

 class MovieSummary(Action):

 verbose_name = _('Summary')

 def model_run(self, model_context):
 from camelot.view.action_steps import PrintHtml
 movie = model_context.get_object()
 yield PrintHtml("<h1>This will become the movie report of %s!</h1>" % movie.title)

You can already test this. You should see a button in the “Actions” section, on
the right of the Movie detail page. Click this and a print preview should open
with the text you let the html method return.

[image: ../_images/action_button.png]
[image: ../_images/simple_report.png]
Now let’s make it a bit fancier.

Using Jinja templates

Install and add Jinja2 to your PYTHONPATH. You can find it here:
http://jinja.pocoo.org/2/ or at the cheeseshop
http://pypi.python.org/pypi/Jinja2 . Now let’s use its awesome powers.

First we’ll make a base template. This will determine our look and feel for all
the report pages. This is basically html and css with block definitions.
Later we’ll create the page movie summary template which will contain our model
data. The movie summary template will inherit the base template, and provide
content for the aforementioned blocks. The base template could look something
like:

<html>
<head>
 <title>{% block page_head_title %}{% endblock %}</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <style type="text/css">
body, html {
 font-family: Verdana, Arial, sans-serif;
}
{% block styles %}{% endblock %}
 </style>
</head>
<body>

<table id="page_header" width="100%">
 <tr>
 <td><h1>{% block page_header %}{% endblock %}</h1></td>
 <td align="right">{% block page_header_right %}{% endblock %}</td>
 </tr>

</table>
<hr>
<h2 id="page_title"><center>{% block page_title %}{% endblock %}</center></h2>
<hr>
{% block page_content %}{% endblock %}
<hr>
<div id="page_footer">{% block page_footer %}{% endblock %}</div>

</body>
</html>

We’ll save this file as base.html in a directory called templates in our
videostore. Like this base template, the movie summary template is html and
css. Take a look at the example first:

{% extends 'base.html' %}
{% block styles %}{{ style }}{% endblock %}
{% block page_head_title %}{{ title }}{% endblock %}
{% block page_title %}{{ title }}{% endblock %}
{% block page_header %}{{ header }}{% endblock %}
{% block page_header_right %}
{% if cover %}

{% else %}
 (no cover)
{% endif %}
{% endblock %}
{% block page_content %}{{ content }}{% endblock %}
{% block page_footer %}{{ footer }}{% endblock %}

First we extend the base template, that way we don’t need to worry about the
boilerplate stuff, and keep our pages consistent, provided we create more
reports of course. We can now fill in the blanks, erm blocks from the base
template. We do that with placeholders which we’ll define in the html method of
our MovieSummary class. This way we can even add style to the page:

{% block styles %}{{ style }}{% endblock %}

We’ll define this later. The templating language also allows basic flow
control:

{% if cover %}

{% else %}
 (no cover)
{% endif %}

If there is no cover image, we’ll show the string “(no cover)”.
We’ll save this file as movie_summary.html in the templates directory.

Like i said earlier, we now need to define which values will go in the
placeholders, so let’s update our html method in the MovieSummary class.
First, we import the needed elements:

import datetime
from jinja import Environment, FileSystemLoader
from pkg_resources import resource_filename
import videostore
from camelot.core.conf import settings

We’ll be printing a date, so we’ll need datetime. The Jinja classes to make use
of our templates. And to locate our templates, we’ll use the resource module,
with our videostore. And load up the Jinja environment ...

fileloader = FileSystemLoader(resource_filename(videostore.__name__, 'templates'))
e = Environment(loader=fileloader)

Now we need to create a context dictionary to provide data to the templates.
The keys of this dictionary are the placeholders we used in our movie_summary
template, the values we can use from the model, which is passed as the o
argument in the html method:

context = {
'header':o.title,
'title':'Movie Summary',
'style':'.label { font-weight:bold; }',
'content':'Description: %s
\
 Release date: %s
\
 Genre: %s
\
 Director: %s'
 % (o.short_description, o.release_date, o.genre, o.director),
'cover': os.path.join(settings.CAMELOT_MEDIA_ROOT(), 'covers', o.cover_image.name),
'footer':'
copyright %s - Camelot' % datetime.datetime.now().year
}

Plain old Python dictionary. Check it out, we can even pass css in our setup.

Finally, we’ll get the template from the Jinja environment and return the
rendered result of our context:

t = e.get_template('movie_summary.html')
return t.render(context)

So our finished method eventually looks like this:

from camelot.admin.action import Action

class MovieSummary(Action):

 verbose_name = _('Summary')

 def model_run(self, model_context):
 from camelot.view.action_steps import PrintHtml
 import datetime
 import os
 from jinja import Environment, FileSystemLoader
 from pkg_resources import resource_filename
 import videostore
 from camelot.core.conf import settings

 fileloader = FileSystemLoader(resource_filename(videostore.__name__, 'templates'))
 e = Environment(loader=fileloader)
 movie = model_context.get_object()
 context = {
 'header':movie.title,
 'title':'Movie Summary',
 'style':'.label { font-weight:bold; }',
 'content':'Description: %s
\
 Release date: %s
\
 Genre: %s
\
 Director: %s'
 % (movie.short_description, movie.release_date, movie.genre, movie.director),
 'cover': os.path.join(settings.CAMELOT_MEDIA_ROOT(), 'covers', movie.cover_image.name),
 'footer':'
copyright %s - Camelot' % datetime.datetime.now().year
 }
 t = e.get_template('movie_summary.html')
 yield PrintHtml(t.render(context))

What are you waiting for? Go try it out! You should see something like this:

[image: ../_images/final_report.png]

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Tutorials

Add an import wizard to an application

In this tutorial we will add an import wizard to the movie database
application created in the Creating a Movie Database Application tutorial.

We assume Camelot is properly installed and the movie
database application is working.

[image: _static/controls/main_window.png]

Introduction

Most applications need a way to import data. This data is often delivered
in files generated by another application or company. To demonstrate this
process we will build a wizard that allows the user to import cover images
into the movie database. For each image the user selects, a new Movie will
be created with the selected image as a cover image.

Create an action

All user interaction in Camelot is handled through Actions. For
actions that run in the context of the application, we use the
Application Actions. We first create a file importer.py in
the same directory as application_admin.py.

In this file we create subclass of camelot.admin.action.Action which
will be the entry point of the import wizard:

from camelot.admin.action import Action
from camelot.core.utils import ugettext_lazy as _

class ImportCovers(Action):
 verbose_name = _('Import cover images')

 def model_run(self, model_context):
 yield

So now we haven an ImportCovers action. Such an action has a
verbose_name class attribute with the name of the action as shown to the
user.

The most important method of the action is the model_run method, which
will be triggered when the user clicks the action. This method should be a
generator that yields an object whenever user interaction is required.
Everything that happens inside the model_run method happens in a different
thread than the GUI thread, so it will not block the GUI.

Add the action to the GUI

Now the user needs to be able to trigger the action. We edit the
application_admin.py file and make sure the ImportCoversAction
is imported.

 from camelot_example.importer import ImportCovers

Then we add an instance of the ImportCovers action to the sections
defined in the get_sections method of the ApplicationAdmin:

 Section(_('Movies'),
 self,
 Icon('tango/22x22/mimetypes/x-office-presentation.png'),
 items = [Movie,
 Tag,
 VisitorReport,
VisitorsPerDirector,
 ImportCovers()]),

This will make sure the action pops up in the Movies section of the
application.

[image: _static/controls/navigation_pane.png]

Select the files

To make the action do something useful, we will implement its model_run
method. Inside the model_run method, we can yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] various
camelot.admin.action.base.ActionStep objects to the GUI. An ActionStep
is a part of the action that requires user interaction (the user answering
a question). The result of this interaction is returned by the
yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] statement.

To ask the user for a number of image files to import, we will pop up a file
selection dialog inside the model_run method:

 def model_run(self, model_context):
 from camelot.view.action_steps import (SelectFile,
 UpdateProgress,
 Refresh,
 FlushSession)

 select_image_files = SelectFile('Image Files (*.png *.jpg);;All Files (*)')
 select_image_files.single = False
 file_names = yield select_image_files
 file_count = len(file_names)

The yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] statement returns a list of file names selected by
the user.

[image: _static/actionsteps/select_file.png]

Create new movies

First make sure the Movie class has an camelot.types.Image field
named cover which will store the image files.

 cover = Column(camelot.types.Image(upload_to = 'covers'))

Next we add to the model_run method the actual creation of new movies.

 import os
 from sqlalchemy import orm
 from camelot.core.orm import Session
 from camelot_example.model import Movie

 movie_mapper = orm.class_mapper(Movie)
 cover_property = movie_mapper.get_property('cover')
 storage = cover_property.columns[0].type.storage
 session = Session()

 for i, file_name in enumerate(file_names):
 yield UpdateProgress(i, file_count)
 title = os.path.splitext(os.path.basename(file_name))[0]
 stored_file = storage.checkin(unicode(file_name))
 movie = Movie(title = unicode(title))
 movie.cover = stored_file

 yield FlushSession(session)

In this part of the code several things happen :

Store the images

In the first lines, we do some sqlalchemy magic to get access to the
storage attribute of the cover field. This storage attribute
is of type camelot.core.files.storage.Storage. The Storage
represents the files managed by Camelot.

Create Movie objects

Then for each file, a new Movie object is created with as title the
name of the file. For the cover attribute, the file is checked in into
the Storage. This actually means the file is copied from its original
directory to a directory managed by Camelot.

Write to the database

In the last line, the session is flushed and thus all changes are
written to the database. The camelot.view.action_steps.orm.FlushSession action step flushes the session
and propagetes the changes to the GUI.

Keep the user informed

For each movie imported, a camelot.view.action_steps.update_progress.UpdateProgress
object is yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] to the GUI to inform the user of the import progress.
Each time such an object is yielded, the progress bar is updated.

[image: _static/controls/progress_dialog.png]

Refresh the GUI

The last step of the model_run method will be to refresh the GUI. So if
the user has the Movies table open when importing, this table will show the
newly created movies.

 yield Refresh()

Result

This is how the resulting importer.py file looks like :

from camelot.admin.action import Action
from camelot.core.utils import ugettext_lazy as _
from camelot.view.art import Icon

class ImportCovers(Action):
 verbose_name = _('Import cover images')
 icon = Icon('tango/22x22/mimetypes/image-x-generic.png')

begin select files
 def model_run(self, model_context):
 from camelot.view.action_steps import (SelectFile,
 UpdateProgress,
 Refresh,
 FlushSession)

 select_image_files = SelectFile('Image Files (*.png *.jpg);;All Files (*)')
 select_image_files.single = False
 file_names = yield select_image_files
 file_count = len(file_names)
end select files
begin create movies
 import os
 from sqlalchemy import orm
 from camelot.core.orm import Session
 from camelot_example.model import Movie

 movie_mapper = orm.class_mapper(Movie)
 cover_property = movie_mapper.get_property('cover')
 storage = cover_property.columns[0].type.storage
 session = Session()

 for i, file_name in enumerate(file_names):
 yield UpdateProgress(i, file_count)
 title = os.path.splitext(os.path.basename(file_name))[0]
 stored_file = storage.checkin(unicode(file_name))
 movie = Movie(title = unicode(title))
 movie.cover = stored_file

 yield FlushSession(session)
end create movies
begin refresh
 yield Refresh()
end refresh

Unit tests

Once an action works, its important to keep it working as the development of
the application continues. One of the advantages of working with generators
for the user interaction, is that its easy to simulate the user interaction
towards the model_run() method of the action. This is done by using
the send() method of the generator that is returned when calling
model_run() :

 def test_example_application_action(self):
 from camelot_example.importer import ImportCovers
 from camelot_example.model import Movie
 # count the number of movies before the import
 movies = Movie.query.count()
 # create an import action
 action = ImportCovers()
 generator = action.model_run(None)
 select_file = generator.next()
 self.assertFalse(select_file.single)
 # pretend the user selected a file
 generator.send([os.path.join(os.path.dirname(__file__), '..', 'camelot_example', 'media', 'covers', 'circus.png')])
 # continue the action till the end
 list(generator)
 # a movie should be inserted
 self.assertEqual(movies + 1, Movie.query.count())

Conclusion

We went through the basics of the action framework Camelot :

	Subclassing a camelot.admin.action.Action
class

	Implementing the model_run method

	yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] camelot.admin.action.base.ActionStep objects to
interact with the user

	Add the camelot.admin.action.base.Action object to a
camelot.admin.section.Section in the side pane

More camelot.admin.action.base.ActionStep classes can be found in
the camelot.view.action_steps module.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

Camelot Documentation

This is the reference documentation for developing projects using the Camelot
library. The first time Camelot developer is encouraged to read
Creating models and Admin classes.

The section The Two Threads is for developers whishing to maintain a
responsive UI when faced with significant delays in their application code.

All other sections can be read on an as needed base.

	Camelot Installation
	All in one Windows installer

	From the Python Package Index

	Packages

	From source

	Verifiy the installation

	Creating models
	Column types

	Relations

	Calculated Fields
	Python properties as fields

	Cascading field changes

	Fields calculated by the database

	Views
	The model to start from

	Definition of the view

	Put into action

	Admin classes
	ObjectAdmin

	EntityAdmin

	Others
	Field Attributes
	Static Field Attributes

	Dynamic Field Attributes

	Overview of the field attributes
	address_validator

	calculator

	create_inline

	column_width

	directory

	editable

	field_name

	file_filter

	length

	minimum

	maximum

	precision

	choices

	minimal_column_width

	prefix

	remove_original

	single_step

	suffix

	tooltip

	translate_content

	background_color

	name

	target

	admin

	address_type

	Customizing multiple field attributes

	Validators

	Customizing the Application
	The Application Admin
	The look of the main window

	Interaction with the Operating System

	The look of the application

	The content of the help menu

	Default behavior of the application

	The look of the form views

	Example

	Example of a reduced application

	Creating Forms
	Form

	Inheritance and Forms

	Putting notes on forms

	Available Form Subclasses

	Customizing Forms
	Layout

	Editors

	Tooltips

	Buttons

	Validation

	Actions
	Introduction

	Summary

	What can happen inside model_run()
	yield events to the GUI

	keep the user informed about progress

	manipulation of the model

	raise exceptions

	handle exceptions

	request information from the user

	Issue SQLAlchemy statements

	States and Modes
	States

	Modes

	Action Context
	Application Actions

	Form Actions

	List Actions

	Reusing List and Form actions

	Available actions

	Inspiration

	Documents and Reports
	Generate documents

	HTML based documents
	Alternative rendering

	Docx based documents
	Create a template document with MS Office

	Clean the XML generated by MS Office

	Replace the placeholders

	Delegates
	Specifying delegates

	Charts
	A simple plot

	Actions

	Advanced Plots

	More

	Document Management
	The File field type

	The StoredFile

	The Storage

	Under the hood
	Global settings

	Setting up the ORM

	Setting up the Database
	Engine

	Metadata

	Creating the tables

	Working without the default model

	Transactions

	Using Camelot without the GUI

	Built in data models
	Modules
	Persons and Organizations

	I18N

	Fixture

	Authentication

	Batch Jobs

	History tracking

	Customization
	Adding fields

	Fixtures : handling static data in the database
	When to update fixtures

	Creating new data

	Update fixtures

	The fixture version

	Managing a Camelot project
	camelot_admin.py

	The Two Threads
	Introduction

	Two Threads

	The Model Thread

	The GUI Thread

	Actions

	Proxy classes

	Application speedup

	Frequently Asked Questions
	How to use the PySide bindings instead of PyQt ?

	Can I use Camelot with an existing database ?

	Why is there no Save button ?

	But my users really want a Save button ?

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Camelot Installation

All in one Windows installer

When working on Windows, the easiest way to get up and running is through
the Conceptive Python SDK [http://www.conceptive.be/python-sdk.htm].

[image: ../_images/cpd_installer1.png]
This SDK is a Python distribution targeted at the development and deployment of QT
based applications. This all in one installation of Camelot with all its
dependencies is available in the shop [http://www.conceptive.be/shop.html].

From the Python Package Index

First, make sure you have setup tools installed, Setup tools [http://pypi.python.org/pypi/setuptools].
If you are using a debian based distribution, you can type:

sudo apt-get install python-setuptools

Then use easy_install to install Camelot, under Linux this would be done by typing:

sudo easy_install camelot

Packages

Linux distributions often offer packages for various applications, including
Camelot and its dependencies :

	OpenSUSE build service [https://build.opensuse.org/project/show?project=home%3Afrispete%3APyQt].

From source

When installing Camelot from source, you need to make sure all dependencies
are installed and available in your PYTHONPATH.

Dependencies

In addition to PyQt 4.8 and Qt 4.8, Camelot needs these libraries :

SQLAlchemy==0.8.0
Jinja2==2.6
chardet==2.1.1
xlwt==0.7.4
xlrd==0.9.0

Releases

The source code of a release can be downloaded from the
Python Package Index [http://pypi.python.org/pypi/Camelot/] and then
extracted:

tar xzvf Camelot-10.07.02.tar.gz

Repository

The latest and greatest version of the source can be checked out
from the Bitbucket repository:

hg clone https://bitbucket.org/conceptive/camelot

Adapting PYTHONPATH

You need to make sure Camelot and all its dependencies are in the PYTHONPATH
before you start using it.

Verifiy the installation

To verify if you have Camelot installed and available in the PYTHONPATH, fire up a
python interpreter:

python

and issue these commands:

>>> import camelot
>>> print camelot.__version__
>>> import sqlalchemy
>>> print sqlalchemy.__version__
>>> import PyQt4

None of them should raise an ImportError.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Creating models

Camelot makes it easy to create views for any type of Python objects.

SQLAlchemy is a very powerful Object Relational Mapper (ORM) with lots of possibilities for handling
simple or sophisticated datastructures. The SQLAlchemy website [http://www.sqlalchemy.org] has extensive
documentation on all these features. An important part of Camelot is providing an easy way to
create views for objects mapped through SQLAlchemy.

SQLAlchemy comes with the Declarative [http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html]
extension to make it easy to define an ORM mapping using the Active Record Pattern. This is used through the
documentation and in the example code.

To use Declarative, threre are some base classes that should be imported:

from camelot.core.orm import Entity
from camelot.admin.entity_admin import EntityAdmin

from sqlalchemy import sql
from sqlalchemy.schema import Column
import sqlalchemy.types

Those are :

	camelot.core.orm.Entity is the declarative base class provided by Camelot for all classes that are mapped to the database,
and is a subclass of camelot.core.orm.entity.EntityBase

	camelot.admin.entity_admin.EntityAdmin is the base class that describes how an Entity subclass should be represented in the GUI

	sqlalchemy.schema.Column [http://docs.sqlalchemy.org/en/rel_0_8/core/schema.html#sqlalchemy.schema.Column] describes a column in the database and a field in the model

	sqlalchemy.types [http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types] contains the various column types that can be used

Next a model can be defined:

class Tag(Entity):

 __tablename__ = 'tags'

 name = Column(sqlalchemy.types.Unicode(60), nullable = False)
 movies = ManyToMany('Movie',
 tablename = 'tags_movies__movies_tags',
 local_colname = 'movies_id',
 remote_colname = 'tags_id')

 def __unicode__(self):
 return self.name

 class Admin(EntityAdmin):
 form_size = (400,200)
 list_display = ['name']

begin visitor report definition

The code above defines the model for a Tag class, an object with only a name that can be related to other
ojbects later on. This code has some things to notice :

	Tag is a subclass of camelot.core.orm.Entity,

	the __tablename__ class attribute allows us to specify the name of the table in the database in which
the tags will be stored.

	The sqlalchemy.schema.Column [http://docs.sqlalchemy.org/en/rel_0_8/core/schema.html#sqlalchemy.schema.Column] statement add fields of a certain type,
in this case sqlalchemy.types.Unicode [http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types.Unicode],
to the Tag class as well as to the tags table

	The __unicode__ method is implemented, this method will be called within Camelot whenever a textual
representation of the object is needed, eg in a window title or a many to one widget. It’s good
practice to always implement the __unicode__ method for all Entity subclasses.

When a new Camelot project is created, the camelot-admin tool creates an empty models.py file that
can be used as a place to start the model definition.

	Column types

	Relations

	Calculated Fields
	Python properties as fields

	Cascading field changes

	Fields calculated by the database

	Views
	The model to start from

	Definition of the view

	Put into action

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Creating models

Column types

SQLAlchemy comes with a set of column types that can be used. These column types will trigger the
use of a certain QtGui.QDelegate to visualize them in the views. Camelot extends those SQLAlchemy
field types with some of its own.

An overview of field types from SQLAlchemy and Camelot is given in the table below :

All SQLAlchemy field types can be found in the sqlalchemy.types [http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types] module.
All additional Camelot field types can be found in the camelot.types module.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Creating models

Relations

SQLAlchemy uses the relationship function to define relations between classes.
This function can be used within Camelot as well.

On top of this, Camelot provides some construct in the camelot.core.orm.relationships that make setting up relationships a bit easier.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Creating models

Calculated Fields

To display fields in forms that are not stored into the database but, are
calculated at run time, two main options exist. Either those fields are
calculated within the database or they are calculated by Python. Normal Python
properties can be used to do the calculation in Python, whereas ColumnProperties
can be used to do the logic in the database.

Python properties as fields

Normal python properties can be used as fields on forms as well. In that case, there
will be no introspection to find out how to display the property. Therefore the delegate
(Specifying delegates) attribute should be specified explicitly.

import math

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

class Coordinate(object):

 def __init__(self, x = 0, y = 0):
 self.id = 1
 self.x = x
 self.y = y

 @property
 def r(self):
 return math.sqr(self.x**2, self.y**2)

 class Admin(ObjectAdmin):
 form_display = ['x', 'y', 'r']
 field_attributes = dict(x = dict(delegate = delegates.FloatDelegate,
 editable = True),
 y = dict(delegate = delegates.FloatDelegate,
 editable = True),
 r = dict(delegate = delegates.FloatDelegate))

By default, python properties are read-only. They have to be set to editable through
the field attributes to make them writeable by the user.

Properties are also used to summarize information from multiple attributes and
put them in a single field.

Cascading field changes

Whenever the value of a field is changed, this change can cascade through the model by
using properties to manipulate the field instead of manipulating it directly. The
example below demonstrates how the value of y should be chopped when x is changed.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

class Coordinate(object):

 def __init__(self):
 self.id = 1
 self.x = 0.0
 self.y = 0.0

 def _get_x(self):
 return self.x

 def _set_x(self, x):
 self.x = x
 self.y = max(self.y,x)

 _x = property(_get_x, _set_x)

 class Admin(ObjectAdmin):
 form_display = ['_x', 'y',]
 field_attributes = dict(_x=dict(delegate=delegates.FloatDelegate, name='x'),
 y=dict(delegate=delegates.FloatDelegate),)
 form_size = (100,100)

[image: doc/../_static/snippets/fields_with_actions.png]

Fields calculated by the database

Having certain summary fields of your models filled by the database has the advantage
that the heavy processing is moved from the client to the server. Moreover if the
summary builds on information in related records, having the database build the summary
reduces the need to transfer additional data from the database to the server.

To display fields in the table and the form view that are the result of a calculation
done by the database, a camelot.core.orm.properties.ColumnProperty needs to be defined in the Declarative model. In this
column property, the sql query can be defined using SQLAlchemy statements. In this example, the Movie class gains the
total_visitors attribute which contains the sum of all visitors that went to a movie.

 @ColumnProperty
 def total_visitors(self):
 return sql.select([sql.func.sum(VisitorReport.visitors)],
 VisitorReport.movie_id == self.id)

It’s important to notice that the value of this field is calculated when the object is fetched from the database. When the user presses F9,
all data in the application is refreshed from the database, and thus all column properties are recalculated.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Creating models

Views

Traditionally, in database land, views are queries defined at the database
level that act like read-only tables. They allow reuse of common queries
across an application, and are very suitable for reporting.

Using SQLAlchemy this traditional approach can be used, but a more dynamic
approach is possible as well. We can map arbitrary queries to an object,
and then visualize these objects with Camelot.

The model to start from

[image: doc/../_static/entityviews/table_view_visitorreport.png]
In the example movie project, we can take three parts of the model : Person,
Movie and VisitorReport:

class Person(Party):
 """Person represents natural persons
 """
 using_options(tablename = 'person')
 party_id = Field(camelot.types.PrimaryKey(),
 ForeignKey('party.id'),
 primary_key = True)
 __mapper_args__ = {'polymorphic_identity': u'person'}
 first_name = Field(Unicode(40), required = True)
 last_name = Field(Unicode(40), required = True)

There is a relation between Person and Movie through the director attribute:

class Movie(Entity):

 __tablename__ = 'movies'

 title = Column(sqlalchemy.types.Unicode(60), nullable = False)
 short_description = Column(sqlalchemy.types.Unicode(512))
 releasedate = Column(sqlalchemy.types.Date)
 genre = Column(sqlalchemy.types.Unicode(15))
 rating = Column(camelot.types.Rating())
 #
 # All relation types are covered with their own editor
 #
 director = ManyToOne('Person')
 cast = OneToMany('Cast')
 visitor_reports = OneToMany('VisitorReport', cascade='delete')
 tags = ManyToMany('Tag',
 tablename = 'tags_movies__movies_tags',
 local_colname = 'tags_id',
 remote_colname = 'movies_id')

And a relation between Movie and VisitorReport:

class VisitorReport(Entity):

 __tablename__ = 'visitor_report'

 date = Column(sqlalchemy.types.Date,
 nullable = False,
 default = datetime.date.today)
 visitors = Column(sqlalchemy.types.Integer,
 nullable = False,
 default = 0)
 movie = ManyToOne('Movie', required = True)

[image: doc/../_static/entityviews/table_view_visitorreport.png]

Definition of the view

Suppose, we now want to display a table with the total numbers of visitors
for all movies of a director.

We first define a plain old Python class that represents the expected results :

class VisitorsPerDirector(object):

 class Admin(EntityAdmin):
 verbose_name = _('Visitors per director')
 list_display = table.Table([table.ColumnGroup(_('Name and Visitors'), ['first_name', 'last_name', 'visitors']),
 table.ColumnGroup(_('Official'), ['birthdate', 'social_security_number', 'passport_number'])]
)
end column group

Then define a function that maps the query that calculates those results
to the plain old Python object :

def setup_views():
 from sqlalchemy.sql import select, func, and_
 from sqlalchemy.orm import mapper

 from camelot.model.party import Person
 from camelot_example.model import Movie, VisitorReport

 s = select([Person.party_id,
 Person.first_name.label('first_name'),
 Person.last_name.label('last_name'),
 Person.birthdate.label('birthdate'),
 Person.social_security_number.label('social_security_number'),
 Person.passport_number.label('passport_number'),
 func.sum(VisitorReport.visitors).label('visitors'),],
 whereclause = and_(Person.party_id == Movie.director_party_id,
 Movie.id == VisitorReport.movie_id),
 group_by = [Person.party_id,
 Person.first_name,
 Person.last_name,
 Person.birthdate,
 Person.social_security_number,
 Person.passport_number,])

 s=s.alias('visitors_per_director')

 mapper(VisitorsPerDirector, s, always_refresh=True)

Put all this in a file called view.py

Put into action

Then make sure the plain old Python object is mapped to the query, just after
the Elixir model has been setup, by modifying the setup_model function in
settings.py:

 def setup_model():
 from sqlalchemy.orm import configure_mappers
 from camelot.core.sql import metadata
 metadata.bind = settings.ENGINE()
 import camelot.model.party
 import camelot.model.authentication
 import camelot.model.i18n
 import camelot.model.fixture
 import camelot.model.memento
 import camelot.model.batch_job
 import camelot_example.model
 #
 # create the tables for all models, configure mappers first, to make
 # sure all deferred properties have been handled, as those could
 # create tables or columns
 #
 configure_mappers()
 metadata.create_all()
 from camelot.model.authentication import update_last_login
 #update_last_login()
 #
 # Load sample data with the fixure mechanism
 #
 from camelot_example.fixtures import load_movie_fixtures
 load_movie_fixtures()
 #
 # setup the views
 #
 from camelot_example.view import setup_views
 setup_views()

And add the plain old Python object to a section in the ApplicationAdmin:

 def get_sections(self):

 from camelot.model.batch_job import BatchJob
 from camelot.model.memento import Memento
 from camelot.model.party import (Person, Organization,
 PartyCategory)
 from camelot.model.i18n import Translation
 from camelot.model.batch_job import BatchJob, BatchJobType

 from camelot_example.model import Movie, Tag, VisitorReport
 from camelot_example.view import VisitorsPerDirector
begin import action
 from camelot_example.importer import ImportCovers
end import action

 return [
begin section with action
 Section(_('Movies'),
 self,
 Icon('tango/22x22/mimetypes/x-office-presentation.png'),
 items = [Movie,
 Tag,
 VisitorReport,
VisitorsPerDirector,
 ImportCovers()]),
end section with action
 Section(_('Relation'),
 self,
 Icon('tango/22x22/apps/system-users.png'),
 items = [Person,
 Organization,
 PartyCategory]),
 Section(_('Configuration'),
 self,
 Icon('tango/22x22/categories/preferences-system.png'),
 items = [Memento,
 Translation,
 BatchJobType,
 BatchJob
])
]

[image: doc/../_static/entityviews/table_view_visitorsperdirector.png]

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Admin classes

The Admin classes are the classes that specify how objects should be visualized, they define the look, feel and behaviour of the Application.
Most of the behaviour of the Admin classes can be tuned by changing their class attributes.
This makes it easy to subclass a default Admin class and tune it to your needs.

[image: ../_images/admin_classes.png]

ObjectAdmin

Camelot is able to visualize any Python object, through the use of the camelot.admin.object_admin.ObjectAdmin
class. However, subclasses exist that use introspection to facilitate the visualisation.

Each class that is visualized within Camelot has an associated Admin class which specifies how the object or a list of objects should be visualized.

Usually the Admin class is bound to the model class by defining it as an inner class of the model class:

class Options(object):
 """A python object in which we store the change in rating
 """

 def __init__(self):
 self.only_selected = True
 self.change = 1

 # Since Options is a plain old python object, we cannot
 # use an EntityAdmin, and should use the ObjectAdmin
 class Admin(ObjectAdmin):
 verbose_name = _('Change rating options')
 form_display = ['change', 'only_selected']
 form_size = (100, 100)
 # Since there is no introspection, the delegate should
 # be specified explicitely, and set to editable
 field_attributes = {'only_selected':{'delegate':delegates.BoolDelegate,
 'editable':True},
 'change':{'delegate':delegates.IntegerDelegate,
 'editable':True},
 }

begin change rating action definition

Most of the behaviour of the Admin class can be customized by changing the class attributes like verbose_name, list_display and form_display.

Other Admin classes can inherit ObjectAdmin if they want to provide additional functionallity, like introspection to set default field attributes.

EntityAdmin

The camelot.admin.entity_admin.EntityAdmin class is a subclass of ObjectAdmin that can be used to visualize objects mapped to a database using SQLAlchemy.

The EntityAdmin uses introspection of the model to guess the default field attributes.
This makes the definition of an Admin class less verbose.

class Tag(Entity):

 __tablename__ = 'tags'

 name = Column(sqlalchemy.types.Unicode(60), nullable = False)
 movies = ManyToMany('Movie',
 tablename = 'tags_movies__movies_tags',
 local_colname = 'movies_id',
 remote_colname = 'tags_id')

 def __unicode__(self):
 return self.name

 class Admin(EntityAdmin):
 form_size = (400,200)
 list_display = ['name']

begin visitor report definition

The camelot.admin.entity_admin.EntityAdmin provides some additonal attributes on top of those
provided by camelot.admin.object_admin.ObjectAdmin, such as list_filter and list_search

Others

	Field Attributes
	Static Field Attributes

	Dynamic Field Attributes

	Overview of the field attributes
	address_validator

	calculator

	create_inline

	column_width

	directory

	editable

	field_name

	file_filter

	length

	minimum

	maximum

	precision

	choices

	minimal_column_width

	prefix

	remove_original

	single_step

	suffix

	tooltip

	translate_content

	background_color

	name

	target

	admin

	address_type

	Customizing multiple field attributes

	Validators

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Admin classes

Field Attributes

[image: ../_images/field_attributes.png]

Field attributes are the most convenient way to customize
an application, they can be specified through the
field_attributes dictionary of an Admin class :

class VisitorReport(Entity):

 __tablename__ = 'visitor_report'

 date = Column(sqlalchemy.types.Date,
 nullable = False,
 default = datetime.date.today)
 visitors = Column(sqlalchemy.types.Integer,
 nullable = False,
 default = 0)
 movie = ManyToOne('Movie', required = True)
end visitor report definition

 class Admin(EntityAdmin):
 verbose_name = _('Visitor Report')
 list_display = ['movie', 'date', 'visitors']
 field_attributes = {'visitors':{'minimum':0}}

Each combination of a delegate and an editor used to handle
a field supports a different set of field attributes. To know
which field attribute is supported by which editor or delegate,
have a look at the Delegates documentation.

Static Field Attributes

Static field attributes should be the same for every row in
the same column, as such they should be specified as constant
in the field attributes dictionary.

Dynamic Field Attributes

Some field attributes, like background_color, can be dynamic.
This means they can be specified as a function in the field
attributes dictionary.

This function should take as its single argument the object on
which the field attribute applies, as can be seen in the
background color example

These are the field attributes that can be dynamic:

Overview of the field attributes

address_validator

A function that verifies if a virtual address is valid, and eventually
corrects it. The default implementation can is
camelot.view.controls.editors.virtualaddresseditor.default_address_validator()

This function will be called while the user is editing the address, therefor it
should take very little time to do the validation. If the address is invalid,
this will be shown to the user, but it will not block the input of the address.

calculator

True or False Indicates whether a calculator should be available when editing this field.

create_inline

used in a one to many relation, if False, then a new entity will be
created within a new window, if True, it will be created as a new line
in the table.

column_width

An integer forcing the column width of a field in a table view. The use of this
field attribute is not recommended, since in most cases Camelot will figure out
how wide a column should be. The use of minimal_column_width is advised
to make sure a column has a certain width. But the column_width field attribute
can be used to shrink the column width to arbitrary sizes, even if this might
make the header unreadeable.

 field_attributes = { 'first_name':{'column_width':8},
 'suffix':{'column_width':8},}

[image: _static/controls/column_width.png]

directory

True or False indicates if the file editor should point to a
directory instead of a file. By default it points to a file.

editable

True or False

Indicates whether the user can edit the field.

field_name

This is the object name of the QtGui.QWidget that will be used
as an editor for this field.

file_filter

When the user is able to select a file or filename, use this filter to limit the available files.

length

The maximum number of characters that can be entered in a text field.

minimum

The minimum allowed value for Integer and
Float delegates or their related delegates like the Star delegate.

maximum

The maximum allowed value for Integer and
Float delegates or their related delegates like the Star delegate.

precision

The numerical precision that will be used to display Float values,
this is unrelated to the precision in which they are stored.

choices

A function taking as a single argument the object to which the field
belongs. The function returns a list of tuples containing for each
possible choice the value to be stored on the model and the value
displayed to the user.

The use of choices forces the use of the ComboBox delegate:

field_attributes = {'state':{'choices':lambda o:[(1, 'Active'),
 (2, 'Passive')]}}

minimal_column_width

An integer specifying the minimal column width when this field is
displayed in a table view. The width is expressed as the number of
characters that should fit in the column:

field_attributes = {'name':{'minimal_column_width':50}}

will make the column wide enough to display at least 50 characters.
The user will still be able to reduce the column size manually.

prefix

String to display before a number

remove_original

True or False

Set to True when a file should be deleted after it has been transfered
to the storage.

single_step

The size of a single step when the up and down arrows are used in
on a float or an integer field.

suffix

String to display after a number

tooltip

A function taking as a single argument the object to which the field
belongs. The function should return a string that will be used as a
tooltip. The string may contain html markup.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

def dynamic_tooltip_x(coordinate):
 return u'The x value of the coordinate, now set to %s'%(coordinate.x)

def dynamic_tooltip_y(coordinate):
 return u'The y value of the coordinate, now set to %s'%(coordinate.y)

class Coordinate(object):

 def __init__(self):
 self.id = 1
 self.x = 0.0
 self.y = 0.0

 class Admin(ObjectAdmin):
 form_display = ['x', 'y',]
 field_attributes = dict(x=dict(delegate=delegates.FloatDelegate,
 tooltip=dynamic_tooltip_x),
 y=dict(delegate=delegates.FloatDelegate,
 tooltip=dynamic_tooltip_y),
)
 form_size = (100,100)

[image: doc/../_static/snippets/fields_with_tooltips.png]

translate_content

True or False

Wether the content of a field should be translated before displaying it. This
only works for displaying content, not while editing it.

background_color

A function taking as a single argument the object to which the field
belongs. The function should return None if the default background should
be used, or a QColor to be used as the background.

"""This Admin class turns the background of a Person's first
name pink if its first name doesn't start with a capital"""

from PyQt4.QtGui import QColor

from camelot.model.party import Person

def first_name_background_color(person):
 import string
 if person.first_name:
 if person.first_name[0] not in string.uppercase:
 return QColor('pink')

class Admin(Person.Admin):
 field_attributes = {'first_name':{'background_color':first_name_background_color}}

[image: doc/../_static/snippets/background_color.png]

name

The name of the field used, this defaults to the name of the attribute

target

In case of relation fields, specifies the class that is at the other
end of the relation. Defaults to the one found by introspection. This
can be used to let a many2one editor always point to a subclass of the
one found by introspection.

admin

In case of relation fields, specifies the admin class that is to be used
to visualize the other end of the relation. Defaults to the default admin
class of the target class. This can be used to make the table view
within a one2many widget look different from the default table view for
the same object.

address_type

Should be None or one of the Virtual Address Types, like ‘phone’ or
‘email’. When specified, it indicates that a VirtualAddressEditor should
only accept addresses of the specified type.

Customizing multiple field attributes

When multiple field attributes need to be customized, specifying the
field_attributes dictionary can become inefficient.

Several methods of the camelot.admin.object_admin.ObjectAdmin class can be overwritten to take care of this.

Instead of filling the field_attributes dictionary manually, the :method:`camelot.admin.object_admin.ObjectAdmin.get_field_attributes` method can be overwritten :

When multiple dynamic field attributes need to execute the same logic to determine their value,
it can be more efficient to overwrite the method :method:`camelot.admin.object_admin.ObjectAdmin.get_dynamic_field_attributes` and
execute the logic once there and set the value for all dynamic field attributes at once.

The complement of get_dynamic_field_attributes is :method:`camelot.admin.object_admin.ObjectAdmin.get_static_field_attributes`.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Admin classes

Validators

Before an object is written to the database it needs to be validated, and
the user needs to be informed in case the object is not valid.

By default Camelot does some introspection on the model to check the validity
of an object, to make sure it will be able to write the object to the
database.

But this might not be enough. If more validation is needed, a custom Validator
class can be defined.
The default camelot.admin.validator.entity_validator.EntityValidator can be subclassed to create a custom validator.
The new class should then be bound to the Admin class :

from camelot.admin.validator.entity_validator import EntityValidator
from camelot.admin.entity_admin import EntityAdmin

class PersonValidator(EntityValidator):

 def objectValidity(self, entity_instance):
 messages = super(PersonValidator,self).objectValidity(entity_instance)
 if (not entity_instance.first_name) or (len(entity_instance.first_name) < 3):
 messages.append("A person's first name should be at least 2 characters long")
 return messages

class Admin(EntityAdmin):
 verbose_name = 'Person'
 list_display = ['first_name', 'last_name']
 validator = PersonValidator

Its most important method is objectValidity, which takes an object as argument and
should return a list of strings explaining why the object is invalid. These
strings will then be presented to the user.

Notice that this method will always get called outside of the GUI thread, so the call will never block the GUI.

When the user tries to leave a form in an invalid state, a platform dependent dialog box will appear.

[image: doc/../_static/snippets/entity_validator.png]

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Customizing the Application

The ApplicationAdmin controls how the application behaves, it determines
the sections in the left pane, the availability of help, the about box,
the menu structure, etc.

The Application Admin

Each Camelot application should subclass
camelot.admin.application_admin.ApplicationAdmin and overwrite some of
its methods.

The look of the main window

Most of these methods are based on the concept of Actions.

	camelot.admin.application_admin.ApplicationAdmin.get_sections()

	camelot.admin.application_admin.ApplicationAdmin.get_actions()

	camelot.admin.application_admin.ApplicationAdmin.get_toolbar_actions()

	camelot.admin.application_admin.ApplicationAdmin.get_main_menu()

Interaction with the Operating System

	camelot.admin.application_admin.ApplicationAdmin.get_organization_name()

	camelot.admin.application_admin.ApplicationAdmin.get_organization_domain()

	camelot.admin.application_admin.ApplicationAdmin.get_name()

	camelot.admin.application_admin.ApplicationAdmin.get_version()

The look of the application

	camelot.admin.application_admin.ApplicationAdmin.get_splashscreen()

	camelot.admin.application_admin.ApplicationAdmin.get_stylesheet()

	camelot.admin.application_admin.ApplicationAdmin.get_translator()

	camelot.admin.application_admin.ApplicationAdmin.get_icon()

The content of the help menu

	camelot.admin.application_admin.ApplicationAdmin.get_about()

	camelot.admin.application_admin.ApplicationAdmin.get_help_url()

Default behavior of the application

	camelot.admin.application_admin.ApplicationAdmin.get_related_admin()

The look of the form views

	camelot.admin.application_admin.ApplicationAdmin.get_related_toolbar_actions()

	camelot.admin.application_admin.ApplicationAdmin.get_form_actions()

	camelot.admin.application_admin.ApplicationAdmin.get_form_toolbar_actions()

Example

class MyApplicationAdmin(ApplicationAdmin):

 name = 'Camelot Video Store'

begin sections
 def get_sections(self):

 from camelot.model.batch_job import BatchJob
 from camelot.model.memento import Memento
 from camelot.model.party import (Person, Organization,
 PartyCategory)
 from camelot.model.i18n import Translation
 from camelot.model.batch_job import BatchJob, BatchJobType

 from camelot_example.model import Movie, Tag, VisitorReport
 from camelot_example.view import VisitorsPerDirector
begin import action
 from camelot_example.importer import ImportCovers
end import action

 return [
begin section with action
 Section(_('Movies'),
 self,
 Icon('tango/22x22/mimetypes/x-office-presentation.png'),
 items = [Movie,
 Tag,
 VisitorReport,
VisitorsPerDirector,
 ImportCovers()]),
end section with action
 Section(_('Relation'),
 self,
 Icon('tango/22x22/apps/system-users.png'),
 items = [Person,
 Organization,
 PartyCategory]),
 Section(_('Configuration'),
 self,
 Icon('tango/22x22/categories/preferences-system.png'),
 items = [Memento,
 Translation,
 BatchJobType,
 BatchJob
])
]
end sections

begin actions
 def get_actions(self):
 from camelot.admin.action import OpenNewView
 from camelot_example.model import Movie

 new_movie_action = OpenNewView(self.get_related_admin(Movie))
 new_movie_action.icon = Icon('tango/22x22/mimetypes/x-office-presentation.png')

 return [new_movie_action]
end actions

Example of a reduced application

By reimplementing the default get_sections(), get_main_menu() and
get_toolbar_actions(), it is possible to create a completely differently
looking Camelot application.

[image: _static/controls/reduced_main_window.png]
 def get_toolbar_actions(self, toolbar_area):
 from PyQt4.QtCore import Qt
 from camelot.model.party import Person
 from camelot.admin.action import application_action, list_action
 from model import Movie

 movies_action = application_action.OpenTableView(self.get_related_admin(Movie))
 movies_action.icon = Icon('tango/22x22/mimetypes/x-office-presentation.png')
 persons_action = application_action.OpenTableView(self.get_related_admin(Person))
 persons_action.icon = Icon('tango/22x22/apps/system-users.png')

 if toolbar_area == Qt.LeftToolBarArea:
 return [movies_action,
 persons_action,
 list_action.OpenNewView(),
 list_action.OpenFormView(),
 list_action.DeleteSelection(),
 application_action.Exit(),]

 def get_actions(self):
 return []

 def get_sections(self):
 return None

 def get_main_menu(self):
 return None

 def get_stylesheet(self):
 from camelot.view import art
 return art.read('stylesheet/black.qss')

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Creating Forms

This section describes how to place fields on forms and applying
various layouts. It also covers how to customize forms to your
specific needs. As with everything in Camelot, the goal of the framework
is that you can create 80% of your forms with minimal effort, while
the framework should allow you to really customize the other 20% of
your forms.

Form

A form is a collection of fields organized within a layout. Each
field is represented by its editor.

Usually forms are defined by specifying the form_display attribute of an
Admin class :

from sqlalchemy.schema import Column
from sqlalchemy.types import Unicode, Date
from camelot.admin.entity_admin import EntityAdmin
from camelot.core.orm import Entity
from camelot.view import forms

class Movie(Entity):
 title = Column(Unicode(60), nullable=False)
 short_description = Column(Unicode(512))
 releasedate = Column(Date)

 class Admin(EntityAdmin):
 form_display = forms.Form(['title', 'short_description', 'releasedate'])

[image: doc/../_static/form/form.png]
The form_display attribute should either be a list of fields to display
or an instance of camelot.view.forms.Form or its subclasses.

Forms can be nested into each other :

from camelot.admin.entity_admin import EntityAdmin
from camelot.view import forms
from camelot.core.utils import ugettext_lazy as _

class Admin(EntityAdmin):
 verbose_name = _('person')
 verbose_name_plural = _('persons')
 list_display = ['first_name', 'last_name',]
 form_display = forms.TabForm([('Basic', forms.Form(['first_name', 'last_name', 'contact_mechanisms',])),
 ('Official', forms.Form(['birthdate', 'social_security_number', 'passport_number',
 'passport_expiry_date','addresses',])),])

[image: doc/../_static/form/nested_form.png]

Inheritance and Forms

Just as Entities support inheritance, forms support inheritance as well. This
avoids duplication of effort when designing and maintaining forms. Each of the
Form subclasses has a set of methods to modify its content. In the example below
a new tab is added to the form defined in the previous section.

from copy import deepcopy

from camelot.view import forms
from nested_form import Admin

class InheritedAdmin(Admin):
 form_display = deepcopy(Admin.form_display)
 form_display.add_tab('Work', forms.Form(['employers', 'directed_organizations', 'shares']))

[image: doc/../_static/form/inherited_form.png]

Putting notes on forms

[image: doc/../_static/editors/NoteEditor.png]
A note on a form is nothing more than a property with the NoteDelegate as its
delegate and where the widget is inside a WidgetOnlyForm.

In the case of a Person, we display a note if another person with the same name
already exists :

 def note(self):
 for person in self.__class__.query.filter_by(first_name=self.first_name, last_name=self.last_name):
 if person != self:
 return _('A person with the same name already exists')

Available Form Subclasses

The camelot.view.forms.Form class has several subclasses that can be used to create
various layouts. Those can be found in the camelot.view.forms module.
Each subclass maps to a Qt Layout class.

Customizing Forms

Several options exist for completely customizing the forms of an application.

Layout

When the desired layout cannot be achieved with Camelot’s form classes, a custom camelot.view.forms.Form subclass can be made to layout the widgets.

When subclassing the Form class, it’s render method should be reimplemented to put the labels and the editors in a custom layout. The render method will be
called by Camelot each time it needs the form. It should thus return a QtGui.QWidget to be used as the needed form.

The render method its first argument is the factory class camelot.view.controls.formview.FormEditors, through which editors and labels can be
constructed. The editor widgets are bound to the data model.

from PyQt4 import QtGui

from camelot.view import forms
from camelot.admin.entity_admin import EntityAdmin

class CustomForm(forms.Form):

 def __init__(self):
 super(CustomForm, self).__init__(['first_name', 'last_name'])

 def render(self, editor_factory, parent = None, nomargins = False):
 widget = QtGui.QWidget(parent)
 layout = QtGui.QFormLayout()
 layout.addRow(QtGui.QLabel('Please fill in the complete name :', widget))
 for field_name in self.get_fields():
 field_editor = editor_factory.create_editor(field_name, widget)
 field_label = editor_factory.create_label(field_name, field_editor, widget)
 layout.addRow(field_label, field_editor)
 widget.setLayout(layout)
 widget.setBackgroundRole(QtGui.QPalette.ToolTipBase)
 widget.setAutoFillBackground(True)
 return widget

class Admin(EntityAdmin):
 list_display = ['first_name', 'last_name']
 form_display = CustomForm()
 form_size = (300,100)

The form defined above puts the widgets into a QtGui.QFormLayout using a different background color, and adds some instructions for the user :

[image: doc/../_static/form/custom_layout.png]

Editors

The editor of a specific field can be changed, by specifying an alternative QtGui.QItemDelegate for that field, using the delegate field attributes,
see Specifying delegates.

Tooltips

Each field on the form can be given a dynamic tooltip, using the tooltip field attribute, see tooltip.

Buttons

Buttons bound to a specific action can be put on a form, using the form_actions attribute, attribute of the Admin class : Form Actions.

Validation

Validation is done at the object level. Before a form is closed validation of the bound object takes place, an invalid object will prevent closing the form.
A custom validator can be defined : Validators

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Actions

Introduction

Besides displaying and editing data, every application needs the
functions to manipulate data or create reports. In Camelot this is done through
actions. Actions can appear as buttons on the side of a form or a table, as
icons in a toolbar or as icons in the home workspace.

[image: _static/entityviews/new_view_address.png]
Every Action is build up with a set of Action Steps. An Action Step is a
reusable part of an Action, such as for example, ask the user to select a
file. Camelot comes with a set of standard Actions and Action Steps that are
easily extended to manipulate data or create reports.

When defining Actions, a clear distinction should be made between things
happening in the model thread (the manipulation or querying of data), and things
happening in the gui thread (pop up windows or reports). The The Two Threads
section gives more detail on this.

Summary

In general, actions are defined by subclassing the standard Camelot
camelot.admin.action.Action class

from camelot.admin.action import Action
from camelot.view.action_steps import PrintHtml
from camelot.core.utils import ugettext_lazy as _
from camelot.view.art import Icon

class PrintReport(Action):

 verbose_name = _('Print Report')
 icon = Icon('tango/16x16/actions/document-print.png')
 tooltip = _('Print a report with all the movies')

 def model_run(self, model_context):
 yield PrintHtml('Hello World')

Each action has two methods, gui_run() and model_run(), one of
them should be reimplemented in the subclass to either run the action in the
gui thread or to run the action in the model thread. The default
Action.gui_run() behavior is to pop-up a ProgressDialog dialog
and start the model_run() method in the model thread.

model_run() in itself is a generator, that can yield ActionStep
objects back to the gui, such as a PrintHtml.

The action objects can than be used a an element of the actions list returned by
the ApplicationAdmin.get_actions() method:

 def get_actions(self):
 from camelot.admin.action import OpenNewView
 from camelot_example.model import Movie

 new_movie_action = OpenNewView(self.get_related_admin(Movie))
 new_movie_action.icon = Icon('tango/22x22/mimetypes/x-office-presentation.png')

 return [new_movie_action]

or be used in the ObjectAdmin.list_actions or
ObjectAdmin.form_actions attributes.

The Add an import wizard to an application tutorial has a complete example of creating and
using and action.

What can happen inside model_run()

yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] events to the GUI

Actions need to be able to send their results back to the user, or ask
the user for additional information. This is done with the yield [http://docs.python.org/dev/reference/simple_stmts.html#yield]
statement.

Through yield [http://docs.python.org/dev/reference/simple_stmts.html#yield], an Action Step is send to the GUI thread, where it creates
user interaction, and sends it result back to the ‘model_thread’. The model_thread
will be blocked while the action in the GUI thread takes place, eg

yield PrintHtml('Hello World')

Will pop up a print preview dialog in the GUI, and the model_run method will
only continue when this dialog is closed.

Events that can be yielded to the GUI should be of type
camelot.admin.action.base.ActionStep. Action steps are reusable parts of
an action. Possible Action Steps that can be yielded to the GUI include:

	camelot.view.action_steps.change_object.ChangeObject

	camelot.view.action_steps.change_object.ChangeObjects

	camelot.view.action_steps.print_preview.PrintChart

	camelot.view.action_steps.print_preview.PrintPreview

	camelot.view.action_steps.print_preview.PrintHtml

	camelot.view.action_steps.print_preview.PrintJinjaTemplate

	camelot.view.action_steps.open_file.OpenFile

	camelot.view.action_steps.open_file.OpenStream

	camelot.view.action_steps.open_file.OpenJinjaTemplate

	camelot.view.action_steps.gui.CloseView

	camelot.view.action_steps.gui.MessageBox

	camelot.view.action_steps.gui.Refresh

	camelot.view.action_steps.gui.OpenFormView

	camelot.view.action_steps.gui.ShowPixmap

	camelot.view.action_steps.gui.ShowChart

	camelot.view.action_steps.select_file.SelectFile

	camelot.view.action_steps.select_object.SelectObject

keep the user informed about progress

An camelot.view.action_steps.update_progress.UpdateProgress object can be
yielded, to update the state of the progress dialog:

This should be done regulary to keep the user informed about the
progres of the action:

movie_count = Movie.query.count()

report = '<table>'
for i, movie in enumerate(Movie.query.all()):
 report += '<tr><td>%s</td></tr>'%(movie.name)
 yield UpdateProgress(i, movie_count)
report += '</table>'

yield PrintHtml(report)

Should the user have pressed the Cancel button in the progress
dialog, the next yield of an UpdateProgress object will raise a
camelot.core.exception.CancelRequest.

manipulation of the model

The most important purpose of an action is to query or manipulate the model,
all such things can be done in the model_run() method, such as executing
queries, manipulating files, etc.

Whenever a part of the model has been changed, it might be needed to inform
the GUI about this, so that it can update itself, the easy way of doing so
is by yielding an instance of camelot.view.action_steps.orm.FlushSession
such as:

movie.rating = 5
yield FlushSession(model_context.session)

This will flush the session to the database, and at the same time update
the GUI so that the flushed changes are shown to the user by updating the
visualisation of the changed movie on every screen in the application that
displays this object. Alternative updates that can be generated are :

	camelot.view.action_steps.orm.UpdateObject, if one wants to inform
the GUI an object has been updated.

	camelot.view.action_steps.orm.DeleteObject, if one wants to inform
the GUI an object is going to be deleted.

	camelot.view.action_steps.orm.CreateObject, if one wants to inform
the GUI an object has been created.

raise exceptions

When an action fails, a normal Python Exception can be raised, which
will pop-up an exception dialog to the user that displays a stack trace of the
exception. In case no stack trace should be shown to the user, a
camelot.core.exception.UserException should be raised. This will popup
a friendly dialog :

[image: _static/controls/user_exception.png]
When the model_run() method raises a camelot.core.exception.CancelRequest,
a GeneratorExit or a StopIteration exception, these are
ignored and nothing will be shown to the user.

handle exceptions

In case an unexpected event occurs in the GUI, a yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] statement
will raise a camelot.core.exception.GuiException. This exception
will propagate through the action an will be ignored unless handled by the
developer.

request information from the user

The pop-up of a dialog that presents the user with a number of options can be
triggered from within the model_run() method. This
happens by transferring an options object back and forth between the
model_thread and the gui_thread. To transfer such an object, this object
first needs to be defined:

class Options(object):

 def __init__(self):
 self.earliest_releasedate = datetime.date(2000, 1, 1)
 self.latest_releasedate = datetime.date.today()

 class Admin(ObjectAdmin):
 form_display = ['earliest_releasedate', 'latest_releasedate']
 field_attributes = { 'earliest_releasedate':{'delegate':delegates.DateDelegate},
 'latest_releasedate':{'delegate':delegates.DateDelegate}, }

Than a camelot.view.action_steps.change_object.ChangeObject action step can be
yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] to present the options to the user and get the filled in values back :

 from PyQt4 import QtGui
 from camelot.view import action_steps
 options = NewProjectOptions()
 yield action_steps.UpdateProgress(text = 'Request information')
 yield action_steps.ChangeObject(options)

Will show a dialog to modify the object:

[image: _static/actionsteps/change_object.png]
When the user presses Cancel button of the dialog, the
yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] statement will raise a
camelot.core.exception.CancelRequest.

Other ways of requesting information are :

	camelot.view.action_steps.select_file.SelectFile, to request
to select an existing file to process or a new file to save information.

Issue SQLAlchemy statements

Camelot itself only manipulates the database through objects of the
ORM for the sake of make no difference between objects mapped to the database
and plain old python objects. But for performance reasons, it is often desired
to do manipulations directly through SQLAlchemy ORM or Core queries :

 model_context.session.query(BatchJobType).update(values = {'name':'accounting audit'},
 synchronize_session = 'evaluate')

States and Modes

States

The widget that is used to trigger an action can be in different states. A
camelot.admin.action.base.State object is returned by the
camelot.admin.action.base.Action.get_state method. Subclasses of
Action can reimplement this method to change the State of an action button.

This allows to hide or disable the action button, depending on the objects
selected or the current object being displayed.

Modes

An action widget can be triggered in different modes, for example a print button
can be triggered as Print or Export to PDF. The different modes of
an action are specified as a list of camelot.admin.action.base.Mode objects.

To change the modes of an Action, either specify the modes attribute of
an Action or specify the modes attribute of the State
returned by the Action.get_state() method.

Action Context

Depending on where an action was triggered, a different context will be
available during its execution in camelot.admin.action.base.Action.gui_run()
and camelot.admin.action.base.Action.model_run().

The minimal context available in the GUI thread when gui_run() is
called :

While the minimal contact available in the Model thread when model_run()
is called :

Application Actions

To enable Application Actions for a certain ApplicationAdmin overwrite
its ApplicationAdmin.get_actions() method:

from camelot.admin.application_admin import ApplicationAdmin
from camelot.admin.action import Action

class GenerateReports(Action):

 verbose_name = _('Generate Reports')

 def model_run(self, model_context):
 for i in range(10):
 yield UpdateProgress(i, 10)

class MyApplicationAdmin(ApplicationAdmin)

 def get_actions(self):
 return [GenerateReports(),]

An action specified here will receive an ApplicationActionGuiContext
object as the gui_context argument of the the gui_run()
method, and a ApplicationActionModelContext object as the
model_context argument of the model_run() method.

Form Actions

A form action has access to the object currently visible on the form.

class BurnToDisk(Action):

 verbose_name = _('Burn to disk')

 def model_run(self, model_context):
 yield action_steps.UpdateProgress(0, 3, _('Formatting disk'))
 time.sleep(0.7)
 yield action_steps.UpdateProgress(1, 3, _('Burning movie'))
 time.sleep(0.7)
 yield action_steps.UpdateProgress(2, 3, _('Finishing'))
 time.sleep(0.5)

To enable Form Actions for a certain ObjectAdmin or EntityAdmin,
specify the form_actions attribute.

 #
 # create a list of actions available for the user on the form view
 #
 form_actions = [BurnToDisk()]

[image: _static/entityviews/new_view_movie.png]
An action specified here will receive a FormActionGuiContext object as the
gui_context argument of the gui_run() method, and a
FormActionModelContext object as the model_context argument of the
model_run() method.

List Actions

A list action has access to both all the rows displayed in the table
(called the collection) and the rows selected by the user (called the
selection) :

class ChangeRatingAction(Action):
 """Action to print a list of movies"""

 verbose_name = _('Change Rating')

 def model_run(self, model_context):
 #
 # the model_run generator method yields various ActionSteps
 #
 options = Options()
 yield ChangeObject(options)
 if options.only_selected:
 iterator = model_context.get_selection()
 else:
 iterator = model_context.get_collection()
 for movie in iterator:
 yield UpdateProgress(text = u'Change %s'%unicode(movie))
 movie.rating = min(5, max(0, (movie.rating or 0) + options.change))
 #
 # FlushSession will write the changes to the database and inform
 # the GUI
 #
 yield FlushSession(model_context.session)

To enable List Actions for a certain ObjectAdmin or
EntityAdmin, specify the list_actions attribute:

 #
 # the action buttons that should be available in the list view
 #
 list_actions = [ChangeRatingAction()]

This will result in a button being displayed on the table view.

[image: _static/entityviews/table_view_movie.png]
An action specified here will receive a ListActionGuiContext object as
the gui_context argument of th the gui_run() method, and a
ListActionModelContext object as the model_context argument of the
model_run() method.

Reusing List and Form actions

There is no need to define a different action subclass for form and list
actions, as both their model_context have a get_selection method, a single
action can be used both for the list and the form.

Available actions

Camelot has a set of available actions that combine the various
ActionStep subclasses. Those actions can be used directly or as an
inspiration to build new actions:

	camelot.admin.action.application_action.OpenNewView

	camelot.admin.action.application_action.OpenTableView

	camelot.admin.action.application_action.ShowHelp

	camelot.admin.action.application_action.ShowAbout

	camelot.admin.action.application_action.Backup

	camelot.admin.action.application_action.Restore

	camelot.admin.action.application_action.Refresh

	camelot.admin.action.form_action.CloseForm

	camelot.admin.action.list_action.CallMethod

	camelot.admin.action.list_action.OpenFormView

	camelot.admin.action.list_action.OpenNewView

	camelot.admin.action.list_action.ToPreviousRow

	camelot.admin.action.list_action.ToNextRow

	camelot.admin.action.list_action.ToFirstRow

	camelot.admin.action.list_action.ToLastRow

	camelot.admin.action.list_action.ExportSpreadsheet

	camelot.admin.action.list_action.PrintPreview

	camelot.admin.action.list_action.SelectAll

	camelot.admin.action.list_action.ImportFromFile

	camelot.admin.action.list_action.ReplaceFieldContents

Inspiration

	Implementing actions as generators was made possible with the language functions
of PEP 342 [http://www.python.org/dev/peps/pep-0342].

	The EuroPython talk of Erik Groeneveld inspired the use of these
features. (http://ep2011.europython.eu/conference/talks/beyond-python-enhanched-generators)

	Action steps were introduced to be able to take advantage of the new language
features of PEP 380 [http://www.python.org/dev/peps/pep-0380] in Python 3.3

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Documents and Reports

Generate documents

Generating reports and documents is an important part of any application.
Python and Qt provide various ways to generate documents. Each of them
with its own advantages and disadvantages.

	Method
	Advantages
	Disadvantages

	PDF documents through
reportlab
	
	Perfect control over
layout

	Excellent for mass
creation of documents

	
	Relatively steep
learning curve

	User cannot edit
document

	HTML
	
	Easy to get started

	Print preview within
Camelot

	No dependencies

	
	Not much layout control

	User cannot edit
document

	Docx Word documents
	
	User can edit
document

	
	Proprietary format

	Word processor needed

Camelot leaves all options open to the developer.

Please have a look at Creating a Report with Camelot to get started with generating
documents.

Generating a document or report is nothing more than yielding the appropriate
action step during the model_run() method of an Action.

Action steps usable for reporting are :

	camelot.view.action_steps.print_preview.PrintPreview

	camelot.view.action_steps.print_preview.PrintHtml

	camelot.view.action_steps.print_preview.PrintJinjaTemplate

	camelot.view.action_steps.open_file.OpenFile

	camelot.view.action_steps.open_file.OpenStream

	camelot.view.action_steps.open_file.OpenJinjaTemplate

HTML based documents

 class MovieSummary(Action):

 verbose_name = _('Summary')

 def model_run(self, model_context):
 from camelot.view.action_steps import PrintHtml
 movie = model_context.get_object()
 yield PrintHtml("<h1>This will become the movie report of %s!</h1>" % movie.title)

The supported html subset is documented here :

http://doc.qt.nokia.com/stable/richtext-html-subset.html

Alternative rendering

Instead of QtGui.QTextDocument another html renderer such as
QtWebKit.QWebView can be used in combination with the
camelot.view.action_steps.print_preview.PrintPreview action step. The
QWebView class has complete support for html and css.

 class WebkitPrint(Action):

 def model_run(self, model_context):
 from PyQt4.QtWebKit import QWebView
 from camelot.view.action_steps import PrintPreview

 movie = model_context.get_object()

 document = QWebView()
 document.setHtml('<h2>%s</h2>' % movie.title)

 yield PrintPreview(document)

Docx based documents

Create a template document with MS Office

Create a document using MS Office and with some placeholder text
on places where you want to insert data.

[image: ../_images/template_document_word.png]
And save it as an xml file :

[image: ../_images/template_document_word_save_as.png]

Clean the XML generated by MS Office

The XML file generated by MS Office can be cleaned using xmllint:

xmllint --format template.xml > template_clean.xml

Replace the placeholders

The template will be merged with the objects in the selection using jinja,
where the object in the selection will be available as a variable named
obj and the time of merging the document is available as now:

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Delegates

Delegates are a cornerstone of the Qt model/delegate/view framework.
A delegate is used to display and edit data from a model.

In the Camelot framework, every field of an Entity has an associated delegate
that specifies how the field will be displayed and edited. When a new form or
table is constructed, the delegates of all fields on the form or table will
construct editors for their fields and fill them with data from the model.
When the data has been edited in the form, the delegates will take care of
updating the model with the new data.

All Camelot delegates are subclasses of QtGui.QAbstractItemDelegate.

The Qt website [http://www.qt-project.org] provides detailed information the differenct classes involved in the model/delegate/view framework.

Specifying delegates

The use of a specific delegate can be forced by using the delegate field
attribute. Suppose rating is a field of type integer, then it can
be forced to be visualized as stars:

from camelot.view.controls import delegates

class Movie(Entity):
 title = Column(Unicode(50))
 rating = Column(Integer)

 class Admin(EntityAdmin):
 list_display = ['title', 'rating']
 field_attributes = {'rating':{'delegate':delegates.StarDelegate}}

The above code will result in:

[image: doc/../_static/editors/StarEditor_editable.png]
If no delegate field attribute is given, a default one will be taken
depending on the sqlalchemy field type.

All available delegates can be found in camelot.view.controls.delegates

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Charts

To enable charts, Camelot is closely integrate with Matplotlib [http://www.matplotlib.org],
one of the very high quality Python charting packages.

Often creating a chart involves gathering a lot of data, this needs to happen inside the model, to
free the GUI from such tasks. Once the data is gathered, it is put into a container, this container
is then shipped to the gui thread, where the chart is put on the screen.

[image: doc/../_static/editors/ChartEditor_editable.png]

A simple plot

As shown in the example below, creating a simple plot involves two things :

	Create a property that returns one of the chart containers, in this case
the PlotContainer is used.

	Specify the delegate to be used to visualize the property, this should be
the ChartDelegate

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates
from camelot.container.chartcontainer import PlotContainer

class Wave(object):

 def __init__(self):
 self.amplitude = 1
 self.phase = 0

 @property
 def chart(self):
 import math
 x_data = [x/100.0 for x in range(1, 700, 1)]
 y_data = [self.amplitude * math.sin(x - self.phase) for x in x_data]
 return PlotContainer(x_data, y_data)

 class Admin(ObjectAdmin):
 form_display = ['amplitude', 'phase', 'chart']
 field_attributes = dict(amplitude = dict(delegate=delegates.FloatDelegate,
 editable=True),
 phase = dict(delegate=delegates.FloatDelegate,
 editable=True),
 chart = dict(delegate=delegates.ChartDelegate))

The PlotContainer object takes as its arguments, the same arguments that can be passed to the
matplotlib plot command. The container stores all those arguments, and later passes them to the
plot command executed within the gui thread.

[image: doc/../_static/snippets/simple_plot.png]
The simpel chart containers map to their respective matplotlib command. They include :

Actions

The PlotContainer and BarContainer can be used to print or display charts
as part of an action through the use of the appropriate action steps :

	camelot.view.action_steps.print_preview.PrintChart

	camelot.view.action_steps.gui.ShowChart

 class ChartPrint(Action):

 def model_run(self, model_context):
 from camelot.container.chartcontainer import BarContainer
 from camelot.view.action_steps import PrintChart
 chart = BarContainer([1, 2, 3, 4],
 [5, 1, 7, 2])
 print_chart_step = PrintChart(chart)
 print_chart_step.page_orientation = QtGui.QPrinter.Landscape
 yield print_chart_step

Advanced Plots

For more advanced plots, the camelot.container.chartcontainer.AxesContainer class can be used.
The AxesContainer class can be used as if it were a matplotlib Axes object.
But when a method on the AxesContainer is called it will record the method call instead of creating a plot.
These method calls will then be replayed by the gui to create the actual plot.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates
from camelot.container.chartcontainer import AxesContainer

class Wave(object):

 def __init__(self):
 self.amplitude = 1
 self.phase = 2.89

 @property
 def chart(self):
 import math
 axes = AxesContainer()
 x_data = [x/100.0 for x in range(1, 700, 1)]
 y_data = [self.amplitude * math.sin(x - self.phase) for x in x_data]
 axes.plot(x_data, y_data)
 axes.grid(True)
 axes.axvspan(self.phase-0.05, self.phase+0.05, facecolor='b', alpha=0.5)
 return axes

 class Admin(ObjectAdmin):
 form_display = ['amplitude', 'phase', 'chart']
 field_attributes = dict(amplitude = dict(delegate=delegates.FloatDelegate,
 editable=True),
 phase = dict(delegate=delegates.FloatDelegate,
 editable=True),
 chart = dict(delegate=delegates.ChartDelegate))

[image: doc/../_static/snippets/advanced_plot.png]

More

For more information on the various types of plots that can be created, have a look at the Matplotlib Gallery [http://matplotlib.sourceforge.net/gallery.html].

When the AxesContainer does not provide enough flexibility, for example when the plot needs to
manipulated through its object structure, more customization is possible by subclassing either
the camelot.container.chartcontainer.AxesContainer or the camelot.container.chartcontainer.FigureContainer :

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Document Management

Camelot provides some features for the management of documents. Notice that
documents managed by Camelot are stored in a specific location (either an
application directory on the local disk, a network share or a remote server).

This in contrast with some application that just store the link to a file in
the database, and don’t store the file itself.

Three concepts are important for understanding how Camelot handles documents :

	The Storage : this is the place where Camelot stores its documents,
by default this is a directory on the local system. When a file is
checked in into a storage, a StoredFile is returned. Files are checked
out from the storage by their StoredFile representation.

	The StoredFile : a stored file is a representation of a file stored
in a storage. It does not contain the file itself but its name and meta
information.

	The File Field type : is a custom field type to write and read the
StoredFile into the database. The actual name of the StoredFile is the
only thing stored in the database.

The File field type

Usually the first step when working with documents is to use the File field
type somewhere in the model definition. Alternatively the Image field type
can be used if one only wants to store images in that field.

The StoredFile

When the File field type is used in the code, it returns and accepts objects of
type StoredFile.

The Image field type will return objects of type StoredImage.

The Storage

This is where the actual file is stored. The default storage implementation
simply represents a directory on the file system.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Under the hood

A lot of things happen when a Camelot application starts up.
In this section we give a brief overview of those which might need to be adapted for more complex applications

Global settings

Camelot has a global settings object of which the attributes are used throughout Camelot whenever a piece
of global configuration is needed.
Examples of such global configuration are the location of the database and the location of stored files and
images.
To access the global configuration, simply import the object

from camelot.core.conf import settings
print settings.CAMELOT_MEDIA_ROOT()

To manipulate the global configuration, create a class with the needed attributes and methods and append
it to the global configuration :

The settings object should have a method named ENGINE, uses the create_engine [http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine]
SQLAlchemy function to create a connection to the database.
Camelot provides a default sqlite URI scheme. But you can set your own.

 def ENGINE(self):
 from sqlalchemy import create_engine
 return create_engine(u'sqlite:///%s/%s'%(self.data_folder,
 self.data))

Older versions of Camelot looked for a settings module on sys.path to look for the global configuration.
This approach is still supported.

Setting up the ORM

When the application starts up, the setup_model method of the Settings class is called.
In this function, all model files should be imported, to make sure the model has been completely setup.
The importing of these files is enough to define the mapping between objects and tables.

The import of these model definitions should happen before the call to create_all to make sure all models are known before the tables are created.

Setting up the Database

Engine

The Settings class should contain a method named ENGINE that returns a connection to the database.
Whenever a connection to the database is needed, this method will be called.
The camelot.core.conf.SimpleSettings has a default ENGINE method that returns an SQLite
database in a user directory.

Metadata

SQLAlchemy defines the MetaData class. A MetaData object contains all the information about a database schema, such
as Tables, Columns, Foreign keys, etc. The camelot.core.sql contains the singleton metadata object which is the
default MetaData object used by Camelot.
In the setup_model function, this metadata object is bound to the database engine.

In case an application works with multiple database schemas in parallel, this step needs to be adapted.

Creating the tables

By simply importing the modules which contain parts of the model definition, the needed table information
is added to the metadata object. At the end of the setup_model function, the create_all method is called on the metadata, which
will create the tables in the database if they don’t exist yet.

Working without the default model

Camelot comes with a default model for Persons, Organizations, History tracking, etc.

To turn these on or off, simply add or remove the import statements of those modules from the
setup_model method in the Settings class.

Transactions

Transactions in Camelot can be used just as in normal SQLAlchemy.
This means that inside a camelot.admin.action.base.Action.model_run() method a transaction can be started and committed

with model_context.session.begin()
 ...do some modifications...

More information on the transactional behavior of the session can be found in the SQLAlchemy documentation [http://docs.sqlalchemy.org/en/latest/orm/session.html#committing] ...

Using Camelot without the GUI

Often a Camelot application also has a non GUI part, like batch scripts, server side
scripts, etc.

It is of course perfectly possible to reuse the whole model definition in those non GUI parts.
The easiest way to do so is to leave the Camelot GUI application as it is and then in the non GUI script, initialize the model first

from camelot.core.conf import settings
settings.setup_model()

From that point, all model manipulations can be done. Access to the single
session can be obtained from anywhere through the Session factory method

from camelot.core.orm import Session
session = Session()

After the manipulations to the model have been done, they can be flushed to the db

session.flush()

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Built in data models

Camelot comes with a number of built in data models. To avoid boiler plate models needed in almost any application (like Persons, Addresses, etc.),
the developer is encouraged to use these data models as a start for developing custom applications.

Modules

The camelot.model module contains a number of submodules, each with a specific purpose

To activate such a submodule, the submodule should be imported in the setup_model method of settings class,
before the tables are created

def setup_model(self):
 from camelot.core.sql import metadata
 metadata.bind = self.ENGINE()
 from camelot.model import authentication
 from camelot.model import party
 from camelot.model import i18n
 from camelot.core.orm import setup_all
 setup_all(create_tables=True)

Persons and Organizations

I18N

Fixture

Authentication

Batch Jobs

A batch job object can be used as a context manager :

 from camelot.model.batch_job import BatchJob, BatchJobType
 synchronize = BatchJobType.get_or_create(u'Synchronize')
 with BatchJob.create(synchronize) as batch_job:
 batch_job.add_strings_to_message([u'Synchronize part A',
 u'Synchronize part B'])
 batch_job.add_strings_to_message([u'Done'], color = 'green')

Whenever an exception happens inside the with block, the stack trace
of this exception will be written to the bach job object and it’s status will
be set to errors. At the end of the with block, the status of the
batch job will be set to finished.

History tracking

Customization

Adding fields

Sometimes the built in models don’t have all the fields or relations required for a specific application.
Fortunately it is possible to add fields to an existing model on a per application base.

To do so, simply assign the required fields in the application specific model definition,
before the tables are created.

 party.Person.language = schema.Column(types.Unicode(30))

 metadata.create_all()
 p = party.Person(first_name = u'Peter',
 last_name = u'Principle',
 language = u'English')
 session.flush()

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Fixtures : handling static data in the database

Some tables need to be filled with default data when users start
to work with the application. The Camelot fixture module
camelot.model.fixture assist in handling this kind of data.

Suppose we have an entity PartyCategory to divide Persons and Organizations
into certain groups.

The complete definition of such an entity can be found in
camelot.model.authentication.PartyCategory.

To make things easier for the first time user, some prefab categories should
be available when the user starts the application. Such as Suspect,
Prospect, VIP.

When to update fixtures

Most of the time static data should be created or updated right after the
model has been set up and before the user starts using the application.

The easiest place to do this is in the setup_model method inside the
settings.py module.

So we rewrite settings.py to include a call to a new update_fixtures
method:

def update_fixtures():
 """Update static data in the database"""
 from camelot.model.fixture import Fixture
 from model import MovieType

def setup_model():
 from camelot.model import *
 from camelot.model.memento import *
 from camelot.model.synchronization import *
 from camelot.model.authentication import *
 from camelot.model.i18n import *
 from camelot.model.fixture import *
 from model import *
 setup_all(create_tables=True)
 updateLastLogin()
 update_fixtures()

Creating new data

When creating new data with the fixture module, a reference to the created
data will be stored in the fixture table along with a ‘fixture key’. This
fixture key can be used later to retrieve or update the created data.

So lets create some new movie types:

def update_fixtures():
 """Update static data in the database"""
 from camelot.model.fixture import Fixture
 from model import MovieType
 Fixture.insertOrUpdateFixture(MovieType,
 fixture_key = 'comic',
 values = dict(name='Comic'))
 Fixture.insertOrUpdateFixture(MovieType,
 fixture_key = 'scifi',
 values = dict(name='Science Fiction'))

Fixture keys should be unique for each Entity class.

Update fixtures

When a new version of the application gets released, we might want to change
the static data and add some icons to the movie types. Thanks to the ‘fixture key’,
it’s easy to retrieve and update the already inserted data, just modify the
update_fixtures function:

def update_fixtures():
 """Update static data in the database"""
 from camelot.model.fixture import Fixture
 from model import MovieType
 Fixture.insertOrUpdateFixture(MovieType,
 fixture_key = 'comic',
 values = dict(name='Comic', icon='spiderman.png'))
 Fixture.insertOrUpdateFixture(MovieType,
 fixture_key = 'scifi',
 values = dict(name='Science Fiction', icon='light_saber.png'))

The fixture version

In case lots of data needs to be read into the database (like a list of
postal codeds), it might make no sense to create a new fixture for each code,
instead a fixture version number can be set to indicate a list has been read
into the database. The camelot.model.fixture.FixtureVersion exists
to facilitate this.

 import csv
 if FixtureVersion.get_current_version(u'demo_data') == 0:
 reader = csv.reader(open(example_file))
 for line in reader:
 Person(first_name = line[0], last_name = line[1])
 FixtureVersion.set_current_version(u'demo_data', 1)
 session.flush()

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Managing a Camelot project

Once a project has been created and set up as described in the tutorial Creating a Movie Database Application, it needs to be maintained and managed over time.

The command line tool camelot_admin.py exist to assist in the management of Camelot projects.

camelot_admin.py

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

The Two Threads

Most users of Camelot won’t need the information in this Chapter
and can simply enjoy building applications that don’t freeze. However,
if you start customizing your application beyond developing custom
delegates, this information might be crucial to you.

Introduction

A very important aspect of any GUI application is the speed
with which it responds to the user’s request. While it is
acceptable that some actions take some time to complete, an
application freezing for even half a second makes the user
feel uncomfortable.

From an application developer’s point of view, potential
freezes are everywhere (open a file, access a database, do
some calculations), so we need a structural approach to
get rid of them.

Two different approaches are possible. The first approach
is split all possibly blocking operations into small parts and hook
everything together with events. This is the approach taken
in some of the QT classes (eg.: the network classes) or in
the Twisted framework. The second approach is to use multiple
threads of execution and make sure the blocking operations
run in another thread than the GUI.

	Events :

	
	No multi-threaded programming needed : no deadlocks etc.

	Every single library you use must support this approach

	Multiple threads :

	
	Scary : potential race conditions and deadlocks

	Can be used with existing libraries

The Camelot framework was developed using the multi-threaded
approach. This allows to build on top of a large number of
existing libraries (sqlalchemy, PIL, numpy,...) that don’t support
the event based approach.

Two Threads

To keep the problems associated with multi-threaded programming
under control, Camelot runs only two threads for its basic
operations. Those threads don’t share any data with each other
and exchange information using a message queue (the way
Erlang advocates). This ensures there are no deadlocks or
race conditions.

The first thread, called the GUI Thread contains the QT widgets
and runs the QT event loop. No blocking operations should take
place in this thread. The second thread contains all the data,
like objects mapped to the database by sqlalchemy, and is called
the Model Thread.

This approach keeps the problem of application freezes under
control, it won’t speed up your application when certain actions
take a long time, but it will ensure the gui remains responsive
during those actions.

The Model Thread

Since every single operation on a data model is potentially
blocking (eg : getting an attribute of a class mapped to the
database by sqlalchemy might trigger a query to the database
which might be overloaded at that time), the whole data model
lives in a separate thread and every operation on the data model
should take place within this thread.

To keep things simple and avoid the use of locks and data
synchronization between threads, there is only one such thread,
called the Model Thread.

Other threads that want to interact with the model can post
operations to the model thread using its queue

from camelot.view.model_thread import get_model_thread

mt = get_model_thread()
mt.post(my_operation)

where ‘my_operation’ is a function that will then be executed
within the model thread.

The GUI Thread

Now that all potentially blocking operations have been move to the
model thread, we have a GUI Thread that never blocks. But the GUI
thread will need some data from the model to present to the user.

The GUI thread gets its data by posting an operation to the Model
Thread that strips some data from the model, this data will then be
posted by the Model thread to the GUI thread.

Suppose we want to display the name of the first person in the
database in a QLabel

from camelot.view.model_thread import get_model_thread
from PyQt4 import QtGui

class PersonLabel(QtGui.QLabel):

 def __init__(self):
QtGui.QLabel.__init__(self)
mt = get_model_thread()
mt.post(self.strip_data_from_model, self.put_data_on_label)

 def strip_data_from_model(self):
from camelot.model.authentication import Person
return Person.query.first().name

 def put_data_on_label(self, name):
 self.setText(name)

When the strip_data_from_model method is posted to the Model Thread, it
will be executed within the Model Thread and its result (the name of the
person) will be posted back to the GUI thread. Upon arrival of the name
in the GUI thread the function put_data_on_label will be executed within
the GUI thread with as its first argument the name.

In reality, the stripping of data from the model and presenting this data
to the gui is taken care off by the proxy classes in camelot.view.proxy.

Actions

Proxy classes

[image: ../_images/collection_proxy.png]

Application speedup

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Frequently Asked Questions

How to use the PySide bindings instead of PyQt ?

The Camelot sources as well as the example videostore application can be
converted from PyQt applications to PySide with the camelot_admin tool.

Download the sources and position the shell in the main directory, and then
issue these commands:

python camelot/bin/camelot_admin.py to_pyside .

This will create a subdirectory ‘to_pyside’ which contains the converted
source code.

Can I use Camelot with an existing database ?

Both Declarative and Camelot can be used with an existing schema. However,
since Camelot acts on objects, the classes for those objects still need to
be defined.

Here’s a short example of using camelot with an existing database :

from sqlalchemy.engine import create_engine
from sqlalchemy.pool import StaticPool

engine = create_engine('sqlite:///test.sqlite')
#
Create a table in the database using plain old sql
#
connection = engine.connect()
try:
 connection.execute("""drop table person""")
except:
 pass
connection.execute("""create table person (pk INTEGER PRIMARY KEY,
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL)""")
connection.execute("""insert into person (first_name, last_name)
 values ("Peter", "Principle")""")

#
Use declarative to reflect the table and create classes
#
from camelot.admin.entity_admin import EntityAdmin
from camelot.core.sql import metadata
from sqlalchemy.schema import Table
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base(metadata = metadata)

class Person(Base):
 __table__ = Table('person', Base.metadata,
 autoload=True, autoload_with=engine)

 class Admin(EntityAdmin):
 list_display = ['first_name', 'last_name']

#
Setup a camelot application
#
from camelot.admin.application_admin import ApplicationAdmin
from camelot.admin.section import Section
from camelot.core.conf import settings

class AppAdmin(ApplicationAdmin):

 def get_sections(self):
 return [Section('All tables', self, items = [Person])]

class Settings(object):

 def ENGINE(self):
 return engine

 def setup_model(self):
 metadata.bind = engine

settings.append(Settings())
app_admin = AppAdmin()

#
Start the application
#
if __name__ == '__main__':
 from camelot.view.main import main
 main(app_admin)

More information on using Declarative with an existing database schema can be found in the
Declarative [http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html#using-reflection-with-declarative]
documentation.

Why is there no Save button ?

Early on in the development process, the controversial decision was made not
to have a Save button in Camelot. Why was that ?

	User friendlyness. One of the major objectives of Camelot is to be
user friendly. This also means we should reduce the number of ‘clicks’
a user has to do before achieving something. We believe the ‘Save’ click
is an unneeded click. The application knows when the state of a form is
valid for persisting it to the database, and can do so without user
involvement. We also want to take the ‘saving’ issue out of the mind
of the user, he should not bother wether his work is ‘saved’, it simply is.

	Technical. Once you decide to use a Save button, you need to
ask yourself where you will put that button and what its effect will be.
This question becomes difficult when you want to enable the user to edit
a complex datastructure with one-to-many and many-to-many relations. Most
applications solve this by limiting the options for the user. For example,
most accounting packages will not allow you to create a new customer when
you are creating a new invoice. Because when you save the invoice, should
the customer be saved as well ? Or should the customer have it’s own save
button ? Those packages therefor require the user to first create a
customer, and only then can an invoice be created. These are limitation we
don’t want to impose with Camelot.

	Consistency between editing in table or form view. We wanted the table
view to be really easy to edit (to behave a bit like a spreadsheet), so it’s
easy for the user to do bulk updates. As such the user should not be
bothered by pressing the Save button all the time. If there is
no need to save in the table view, there should be no need in the form view
either.

Some couter arguments for this decision are :

	But what if the user wants to ‘modify’ a form and not save those changes ?
This is indeed something that is not possible without a Save and
it accompanying Cancel button. But this is something a developer
will do a lot while testing an application, but is outside of the normal
workflow of a user. Most users typically want to enter or modify as much
data as possible, they are not testing the application to see how it would
behave on certain data input.

	A form should be validated before it is saved. In an application there are
two levels of validation. The first level is to validate before something
is persisted into the database, this can be done in Camelot using a custom
implementation of a
camelot.admin.validator.entity_validator.EntityValidator. The
second level is a validation before the entered data can be used in the
business process. To do this second level validation, one can use state
changes (Action buttons that change the state of a form, eg from ‘Draft’
to ‘Complete’). A good example of this is when entering a booking into
an accounting package. When a booking is entered, it can only be used when
debit equals credit. What would happen when this validation is done at the
moment the form is ‘saved’. Suppose a user has been working for the better
part of the day on a complex booking, but is not done yet at the end of
the day. Since he cannot yet save his work he has two options, discard it
and restart the next day, or enter some bogus data to be able to save it.
What will happen in the later case when his manager is creating a report
a bit later. So the correct situation in this case is having your work
saved at all times, and to put your booking from a ‘draft’ state to a
‘complete’ state once its ready. This state change will then check if
debit equals credit.

Two years after we made this move, Apple decided to follow our
example : http://www.apple.com/macosx/whats-new/auto-save.html

But my users really want a Save button ?

We advise you to listen very well to the arguments the user has for wanting
a Save button. You will be able to solve most of them by using
state changes instead of a Save button. The other arguments
probably have to do with expections users have from using other applications,
as for those simply ask the users to try to work for a week without a
Save button and get back to you if after that week, they still
have issues with it. Please let us know when they do !

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

Migrate existing Camelot projects

	Migrate from Camelot 11.12.30 to 12.06.29

	Migrate from Camelot 12.06.29 to 13.04.13

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Migrate existing Camelot projects

Migrate from Camelot 11.12.30 to 12.06.29

The place of the default metadata has changed. So the top line at the
model files should change from:

from camelot.model import metadata

to:

from camelot.core.sql import metadata

All Camelot models that you wish to use should be explicitely imported in the
setup_model method in settings.py. And the metadata should be bound to
the engine explicitly in the setup_model method:

def setup_model():
 from camelot.core.sql import metadata
 metadata.bind = ENGINE()
 from camelot.model import authentication
 from camelot.model import party
 from camelot.model import i18n
 from camelot.model import memento
 from camelot.model import fixture
 setup_model(True)

The authentication module has been split into authentication and party.
Person and Organization related imports should be redefined

from camelot.model.authentication import Person

Should become

from camelot.model.party import Person

There were some changes in the data model of Camelot, in the parts that track
change history and handle authentication. Run this SQL script against your
database to do the upgrade, after taking a backup.

On Postgresql

ALTER TABLE memento ADD memento_type INT;
ALTER TABLE memento ADD COLUMN previous_attributes bytea;
UPDATE memento SET
 memento_type = 1,
 previous_attributes = memento_update.previous_attributes
FROM memento_update WHERE memento.id = memento_update.memento_id;
UPDATE memento SET
 memento_type = 2,
 previous_attributes = memento_delete.previous_attributes
FROM memento_delete WHERE memento.id = memento_delete.memento_id;
UPDATE memento SET
 memento_type = 3
FROM memento_create WHERE memento.id = memento_create.memento_id;
ALTER TABLE memento ALTER COLUMN memento_type SET NOT NULL;
ALTER TABLE memento DROP COLUMN row_type;
DROP TABLE memento_update;
DROP TABLE memento_delete;
DROP TABLE memento_create;
CREATE INDEX ix_memento_memento_type
 ON memento (memento_type);
ALTER TABLE authentication_mechanism ADD COLUMN authentication_type INT;
ALTER TABLE authentication_mechanism ADD COLUMN username VARCHAR(40);
ALTER TABLE authentication_mechanism ADD COLUMN password VARCHAR(200);
ALTER TABLE authentication_mechanism ADD COLUMN from_date DATE;
ALTER TABLE authentication_mechanism ADD COLUMN thru_date DATE;
ALTER TABLE authentication_mechanism DROP COLUMN row_type;
ALTER TABLE authentication_mechanism DROP COLUMN is_active;
UPDATE authentication_mechanism SET
 authentication_type = 1,
 from_date = '2000-01-01',
 thru_date = '2400-12-31',
 username = authentication_mechanism_username.username,
 password = authentication_mechanism_username.password
FROM authentication_mechanism_username WHERE authentication_mechanism.id = authentication_mechanism_username.authenticationmechanism_id;
ALTER TABLE authentication_mechanism ALTER COLUMN authentication_type SET NOT NULL;
ALTER TABLE authentication_mechanism ALTER COLUMN from_date SET NOT NULL;
ALTER TABLE authentication_mechanism ALTER COLUMN thru_date SET NOT NULL;
DROP TABLE authentication_mechanism_username;
CREATE INDEX ix_authentication_mechanism_from_date
 ON authentication_mechanism (from_date);
CREATE INDEX ix_authentication_mechanism_thru_date
 ON authentication_mechanism (thru_date);
CREATE INDEX ix_authentication_mechanism_username
 ON authentication_mechanism (username);
CREATE INDEX ix_authentication_mechanism_authentication_type
 ON authentication_mechanism (authentication_type);

On MySQL

ALTER TABLE memento ADD memento_type INT;
ALTER TABLE memento ADD COLUMN previous_attributes blob;
UPDATE memento, memento_update SET
 memento.memento_type = 1,
 memento.previous_attributes = memento_update.previous_attributes
WHERE memento.id = memento_update.memento_id;
UPDATE memento, memento_delete SET
 memento.memento_type = 2,
 memento.previous_attributes = memento_delete.previous_attributes
WHERE memento.id = memento_delete.memento_id;
UPDATE memento, memento_create SET
 memento.memento_type = 3
WHERE memento.id = memento_create.memento_id;
ALTER TABLE memento ALTER COLUMN memento_type SET NOT NULL;
ALTER TABLE memento DROP COLUMN row_type;
DROP TABLE memento_update;
DROP TABLE memento_delete;
DROP TABLE memento_create;
CREATE INDEX ix_memento_memento_type
 ON memento (memento_type);
ALTER TABLE authentication_mechanism ADD COLUMN authentication_type INT;
ALTER TABLE authentication_mechanism ADD COLUMN username VARCHAR(40);
ALTER TABLE authentication_mechanism ADD COLUMN password VARCHAR(200);
ALTER TABLE authentication_mechanism ADD COLUMN from_date DATE;
ALTER TABLE authentication_mechanism ADD COLUMN thru_date DATE;
ALTER TABLE authentication_mechanism DROP COLUMN row_type;
ALTER TABLE authentication_mechanism DROP COLUMN is_active;
UPDATE authentication_mechanism, authentication_mechanism_username SET
 authentication_mechanism.authentication_type = 1,
 authentication_mechanism.from_date = '2000-01-01',
 authentication_mechanism.thru_date = '2400-12-31',
 authentication_mechanism.username = authentication_mechanism_username.username,
 authentication_mechanism.password = authentication_mechanism_username.password
WHERE authentication_mechanism.id = authentication_mechanism_username.authenticationmechanism_id;
ALTER TABLE authentication_mechanism ALTER COLUMN authentication_type SET NOT NULL;
ALTER TABLE authentication_mechanism ALTER COLUMN from_date SET NOT NULL;
ALTER TABLE authentication_mechanism ALTER COLUMN thru_date SET NOT NULL;
DROP TABLE authentication_mechanism_username;
CREATE INDEX ix_authentication_mechanism_from_date
 ON authentication_mechanism (from_date);
CREATE INDEX ix_authentication_mechanism_thru_date
 ON authentication_mechanism (thru_date);
CREATE INDEX ix_authentication_mechanism_username
 ON authentication_mechanism (username);
CREATE INDEX ix_authentication_mechanism_authentication_type
 ON authentication_mechanism (authentication_type);

Or simply drop these tables and have them recreated by Camelot and lose the
history information

DROP TABLE memento_update;
DROP TABLE memento_delete;
DROP TABLE memento_create;
DROP TABLE memento;
DROP TABLE authentication_mechanism_username;
DROP TABLE authentication_mechanism;

Consider converting your settings.py module to a settings object .

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Migrate existing Camelot projects

Migrate from Camelot 12.06.29 to 13.04.13

	Replace all imports from elixir with import from camelot.core.orm.
This should cover most use cases of Elixir, use cases that are not
covered in the new module (inheritance, elixir extensions) should be
rebuild using Declarative. Notice that it is still possible to continue
using Elixir, but not encouraged. This is a good time to move your code
base over to Declarative.

	If the embedded=True field attribute is in use, this should be removed, as
it is no longer supported. The proposed alternative is to use the
camelot.admin.object_admin.ObjectAdmin.get_compounding_objects() method
on the admin to display multiple objects in the same form.

	Database migration commands for the changed batch job model:

CREATE TABLE `batchjob_status` (
 `status_datetime` date DEFAULT NULL,
 `status_from_date` date DEFAULT NULL,
 `status_thru_date` date DEFAULT NULL,
 `from_date` date NOT NULL,
 `thru_date` date NOT NULL,
 `classified_by` int(11) NOT NULL,
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `status_for_id` int(11) NOT NULL,
 PRIMARY KEY (`id`),
 KEY `status_for_id` (`status_for_id`),
 KEY `ix_batchjob_status_classified_by` (`classified_by`),
 CONSTRAINT `batchjob_status_ibfk_1` FOREIGN KEY (`status_for_id`) REFERENCES `batch_job` (`id`) ON DELETE CASCADE ON UPDATE CASCADE
);
ALTER TABLE `batch_job` DROP COLUMN `status`;

	Database migration commands for the changed authentication model:

CREATE TABLE authentication_group
(
 name character varying(256) NOT NULL,
 id serial NOT NULL,
 CONSTRAINT authentication_group_pkey PRIMARY KEY (id)
)

CREATE TABLE authentication_group_member
(
 authentication_group_id integer NOT NULL,
 authentication_mechanism_id integer NOT NULL,
 CONSTRAINT authentication_group_member_pkey PRIMARY KEY (authentication_group_id , authentication_mechanism_id),
 CONSTRAINT authentication_group_members_fk FOREIGN KEY (authentication_group_id)
 REFERENCES authentication_group (id) MATCH SIMPLE
 ON UPDATE NO ACTION ON DELETE NO ACTION,
 CONSTRAINT authentication_group_members_inverse_fk FOREIGN KEY (authentication_mechanism_id)
 REFERENCES authentication_mechanism (id) MATCH SIMPLE
 ON UPDATE NO ACTION ON DELETE NO ACTION
)

CREATE TABLE authentication_group_role
(
 role_id serial NOT NULL,
 group_id integer NOT NULL,
 CONSTRAINT authentication_group_role_pkey PRIMARY KEY (role_id , group_id),
 CONSTRAINT authentication_group_role_group_id_fkey FOREIGN KEY (group_id)
 REFERENCES authentication_group (id) MATCH SIMPLE
 ON UPDATE CASCADE ON DELETE CASCADE
)

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

Advanced Topics

This is documentation for advanced usage of the Camelot library.

	Internationalization
	How to Specify Translation Strings

	Translating Camelot itself

	Where to put Translations

	Loading translations

	End user translations

	Unittests

	Deployment
	Building .egg files

	Windows deployment
	Through CloudLaunch

	Using .egg files

	Linux deployment

	Authentication and permissions

	Development Guidlines
	Python, PyQt and Qt objects

	Debugging Camelot and PyQt
	Log the SQL Queries

	Enable core dumps
	Linux

	Windows

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Internationalization

The Camelot translation system is a very small wrapper around the Qt translation
system. Internally, it uses the QCoreApplication.translate() method to
do the actual translation.

On top of that, it adds the possibility for end users to change translations
theirselves. Those translations are stored in the database. This mechanism
can be used to adapt the vocabulary of an application to that of a specific
company.

How to Specify Translation Strings

Translation strings specify “This text should be translated.”. It’s your responsibility
to mark translatable strings; the system can only translate strings it knows about.

from camelot.core.utils import ugettext as _

message = _("Hello brave new world")

The above example translates the given string immediately. This is not always desired,
since the message catalog might not yet be loaded at the time of execution. Therefore
translation strings can be specified as lazy. They will only get translated when they
are used in the GUI.

from camelot.core.utils import ugettext_lazy as _

message = _("This translation is delayed")

Translation strings in model definitions should always be specified as lazy translation
strings. Only lazy translation strings can be translated by the end user in various
forms.

Translating Camelot itself

To extract translation files from the Camelot source code,
Babel [http://babel.edgewall.org/] needs to be installed.

In the root folder of the Camelot source directory.

First update the translation template:

python setup.py extract_messages

If your language directory does not yet exists in ‘camelot/art/translations’:

python setup.py init_catalog --locale nl

If it allready exists, update it from the translation template:

python setup.py update_catalog

In the language subdirectory of ‘camelot/art/translations’, there is a
subdirectory ‘LC_MESSAGES’ which contains the .po translation file.
This translation file can then be translated with linguist

linguist camelot.po

And edit it :

[image: ../_images/camelot_qt_linguist.png]

Make sure to save them back as GNU gettext .po files.

Then the .po file should be converted to a .qm file to make it loadable
at run time:

lrelease camelot.po

Don’t forget to post your new .po file on the mailing list, so it can
be included in the next release.

For more background information, please have a look at the
Babel Documentation [http://babel.edgewall.org/wiki/Documentation/setup.html]

Where to put Translations

Translations can be put in 2 places :

	in po files which have to be loaded at application startup

	in the Translation table : this table is editable by the users via the Configuration
menu. This is the place to put translations that should be editable by the users. At
application startup, all records in this table related to the current language will be
put in memory.

Loading translations

Translations are loaded when the application starts. To enforce the loading
of the correct translation file, one should overwrite the
camelot.admin.application_admin.ApplicationAdmin.get_translator() method.
This method should return the proper QtCore.QTranslator object.

End user translations

Often it is convenient to let the end user create or update the translations of an
application, this allows the end user to put a lot of domain knowledge into the application.

Therefore, all lazy translation strings can be translated by the end user. When the user
right-clicks on a label in a form, he can select Change translation from the menu and
update the current translation (for the current language). This effectively updates the
content of the Translation table.

After some time the developer can take a copy of this table and decide to put these translations
in po files.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Unittests

	Release:	default

	Date:	April 23, 2013

[image: ../_images/unittest_dream.png]

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Deployment

After developing a Camelot application comes the need to deploy the
application, either at a central location or in a distributed setup.

Building .egg files

Whatever the deployment setup is, it is almost always a good idea to
distribute your application as a single .egg file, containing as much
as possible the dependencies that are likely to change often during
the lifetime of the application. Resource files (like icons or templates
can be included in this .egg file as well).

Building .egg files is a relatively straightforward process using
setuptools.

When a new Camelot project was created with camelot_admin, a
setup.py file was made that is able to build eggs using this
command

python -O setup.py bdist_egg --exclude-source-files

Note

The advantage of using .egg files comes when updating the application, simply
replacing a single .egg file at a central location is enough to migrate all
your users to the new version.

Windows deployment

Through CloudLaunch

CloudLaunch is a service to ease the deployment and update process of Python
applications. It’s main features are :

	Building Windows Installers

	Updating deployed applications

	Monitoring of deployed applications

As CloudLaunch is build on top of setuptools, it works with .egg files,
CloudLaunch works cross platform, so it’s perfectly possible to build a
Windows installer, or update a Windows application from Linux.

To build a .egg file that can be deployed through CloudLaunch, use the
command:

python.exe setup.py bdist_cloud

This will create 2 files in the dist/cloud folder, a traditional .egg file and
a .cld file. The .egg file is a normal .egg file with some additional metadata
included, and without sources. The .cld file contains metadata of the .egg
file, such as its checksum, and information on how get updated versions of the
.egg once deployed.

To make sure the application will run smoothly once deployed, one should test
if the generated .egg and .cld combination works:

cd dist\cloud
cloudlaunch.exe --cld-file movie_store.cld
cd ..\..

If this is working, a Windows installer can be build:

python.exe setup.py bdist_cloud wininst_cloud

This will generate a movie_store.exe file in distcloud, which is an installer
for your application. The end user can now install and run your application on
his machine.

Now is the time to monitor the application as it runs on the end user machine:

python.exe setup.py monitor_cloud

Will display all the logs issued on the end user machine if that machine is
connected to the internet.

When development of the application continues, it will be needed to present the
user with an updated version of the application. This is done with the
command:

python.exe setup.py bdist_cloud upload_cloud

This will send an updated .egg and .cld file to the central repository, where
the end-user application will check for updates. If such an update is detected,
the application will download the new egg and run from that one.

Using .egg files

First of all python needs to be available on the machines that are going
to run the application. The easies way to achieve this is by installing the
Conceptive Python Distribution (CPD) [http://www.python-camelot.com/cpd.html]
on the target machine. This Python distribution can be installed in
End user mode, which means the user will not notice it is installed.

[image: ../_images/cpd_installer.png]
Notice that for python to be available, it not
necessarily needs to be installed on every machine that runs the application.
Installing python on a shared disk of a central server might just be enough.

Also put the .egg file on a shared drive.

Then, the easiest way to proceed is to put a little .vbs bootstrap script on
the shared drive and put shortcuts to it on the desktops of the users. The
.vbs script can look like this:

Set WshShell = WScript.CreateObject("WScript.Shell")
WshShell.Environment("Process").item("PYTHONPATH") = "R:\movie_store-01.01-py2.7.egg;"
WshShell.Run """C:\Program Files\CPD\pythonw.exe"" -m movie_store.main"

Linux deployment

The application can be launched by putting the .egg in the PYTHONPATH
and starting python with the -m option:

export PYTHONPATH = /mnt/r/movie_store-01.01-py2.7.egg
python.exe -m movie_store.main

Don’t forget that all dependencies for your application should be installed
on the system or put in the PYTHONPATH

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Authentication and permissions

fine grained authentication and authorization is not yet included as part of the Camelot framework.

what is included is the function :

camelot.model.authentication.get_current_authentication()

which returns an object of type :class:`camelot.model.authentication.AuthenticationMechanism

where the username is the username of the currently logged in user (because on most desktop
apps, you don’t want a separate login process for your app, but rely on that of the OS).

this function can then be used if you build the Admin classes for your application :

	set the editable field attribute to a function that only
returns Thrue when the current authentication requires
editing of fields

	in the ApplicationAdmin.get_sections method, to hide/show
sections depending on the logged in user

	in the EntityAdmin subclasses, in the get_field_attributes
method, to set fields to editable=False/True depending on
the logged in user

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Development Guidlines

	Date:	April 23, 2013

Python, PyQt and Qt objects

Python and Qt both have their own way of tracking objects
and deleting them when they are no longer needed :

	Python does reference counting supported
by a garbage collector.

	Qt has parent child relations between objects. When a
parent object is deleted, all its child objects are
deleted as well.

PyQt merges these two concepts by introducing ownership
of objects :

	Pure python objects are owned by Python, Python takes
care of their deletion.

	Qt objects wrapped by Python are either:
	owned by Qt when they have a parent object, Qt will
delete them, when their parent object is deleted

	owned by Python when they have no parent, Python will
delete them, and trigger the deletion of all their children
by Qt

	Qt objects that are not wrapped by Python, those are in
one way or another children of a Qt object that is wrapped
by Python, they will get deleted by Qt.

The difficult case in this scheme is the case where Qt objects
are wrapped by Python but have a parent object. This can happen
in two ways :

	A Qt object is created in python, but with a parent

from PyQt4 import QtCore

parent = QtCore.QObject()
child = QtCore.QObject(parent=parent)

In this case PyQt is able to track when the object is
deleted by Qt and raises exceptions accordingly when a
method of underlying Qt object is called after the deletion

parent = QtCore.QObject()
child = QtCore.QObject(parent=parent)
del parent
print child.objectName()

will raise a RuntimeError: underlying C/C++ object has been deleted.

	A Qt object is returned from a Qt function that created the object
without Python being aware of it. When the object is passed as a
return value PyQt will wrap it as a Python object, but is unable
to track when Qt deletes it

from PyQt4 import QtGui
app = QtGui.QApplication([])
window = QtGui.QMainWindow()
statusbar = window.statusBar()
del window
statusbar.objectName()

Will result in a segmentation fault.

A segmentation fault will happen in several cases :

	Python tries to delete a Qt object already deleted by Qt

	PyQt calls a function of a Qt object already deleted

	Qt calls a function of a Qt object already deleted by Python

In principle, PyQt is able to handle all cases where the object
has been created by Python. However, when this ownership tracking
is combined with threading and signal slot connections, a lot
of corner cases arise in both Qt and PyQt.

To play on safe, these guidelines are used when developing Camelot :

	Never keep a reference to objects created by Qt having a parent,
so only use:

window.statusBar().objectName()

	Keep references to Qt child objects as short as possible, and
never beyond the scope of a method call. This is possible because
qt allows objects to have a name.

so instead of doing

from PyQt4 import QtGui

class Parent(QtGui.QWidget):

 def __init__(self):
 super(Parent, self).__init__()
 self._child = QtGui.QLabel(parent=self)

 def do_something(self):
 print self._child.objectName()

this is done

from PyQt4 import QtGui

class Parent(QtGui.QWidget):

 def __init__(self):
 super(Parent, self).__init__()
 child = QtGui.QLabel(parent=self)
 child.setObjectName('label')

 def do_something(self):
 child = self.findChild(QtGui.QWidget, 'label')
 if child != None:
 print child.objectName()

should the child object have been deleted by Qt, the findChild method
will return None, and a segmentation fault is prevented. An explicit
check for None is needed, since even if the widget exists, it might
evaluate to 0 or an empty string.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Debugging Camelot and PyQt

Log the SQL Queries

Configure SQLAlchemy to log all queries:

logging.getLogger('sqlalchemy.engine').setLevel(logging.DEBUG)

Enable core dumps

Linux

For older gdb versions (pre 7),
copy the gdbinit file from the python Misc folder:

cp gdbinit ~/.gdbinit

use:

ulimit -c unlimited

load core file in gdb:

gdb /usr/bin/python -c core

In newer gdb versions, Python can run inside gdb:

http://bugs.python.org/issue8032

To give gdb python super powers:

(gdb) python
>import sys
>sys.path.append('Python-2.7.1/Tools/gdb/libpython.py')
>import libpython
>reload(libpython)
>
>end

https://fedoraproject.org/wiki/Features/EasierPythonDebugging

Windows

	Install Debugging tools for Windows from MSDN

Install ‘Debug Diagnostic Tool’

http://stackoverflow.com/questions/27742/finding-the-crash-dump-files-for-a-c-app

http://blogs.msdn.com/b/tess/

Setup Qt Creator

http://doc.qt.nokia.com/qtcreator-snapshot/creator-debugger-engines.html

	Install Windows Sysinternals process utilities from MSDN

http://technet.microsoft.com/en-us/sysinternals/bb795533

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

Camelot Enhancement Proposals

This section contains proposals to enhance Camelot. The functionallity
described here might not yet be implemented. The purpose of these documents
is to discuss upcomming functions and new API’s before they are implemented.

	Unified Model Definition
	Introduction

	Summary

	Fields

	Default views

	Field attributes

	Relations

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Enhancement Proposals

Unified Model Definition

status : draft

Note

This Camelot enhancement proposal is a work in progress and implementation
has not started.

Introduction

When Camelot is used to display objects that are mapped to the database through SQLAlchemy, Camelot uses introspection to create default views.

When displaying objects that are not mapped to the database, such introspection is not possible.
This often leads to a rather verbose definition of the model and the view

class Task(object):

 def __init__(self):
 self.description = ''
 self.creation_date = datetime.date.today()

 class Admin(ObjectAdmin):
 list_display = ['description', 'due_date']
 field_attributes = { 'description': {'delegate':delegates.TextLineDelegate,
 'editable':True},
 'due_date': {'delegate':delegates.DateDelegate,
 'editable':True}, }

This proposal aims to find a way to create a less descriptive way to define model and view in the case of simple Python objects.

Summary

Fields on objects can be defined in a uniform way wether they are mapped to the database or not.
The definition of the unmapped Task class would be

class Task(object):
 description = Field(unicode, default = 0)
 due_date = Field(datetime.date, default = 0)

While the definition of the mapped Task class would be

class Task(Entity):
 description = Field(sqlalchemy.types.Unicode, default = 0)
 due_date = Field(sqlalchemy.types.Date, default = 0)

Both definitions should be enough for Camelot to create a view and make the object usable in the model.

Fields

Default views

Field attributes

Relations

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

Camelot Documentation contents

	Tutorials
	Creating a Movie Database Application
	Setup Spyder

	Starting a new Camelot project

	Main Window and Views

	Creating the Movie Model

	The EntityAdmin Subclass

	Configuring the Application

	Relationships

	Creating a Report with Camelot
	Massaging the model

	The Summary class

	Using Jinja templates

	Add an import wizard to an application
	Introduction

	Create an action

	Add the action to the GUI

	Select the files

	Create new movies

	Refresh the GUI

	Result

	Unit tests

	Conclusion

	Camelot Documentation
	Camelot Installation
	All in one Windows installer

	From the Python Package Index

	Packages

	From source

	Verifiy the installation

	Creating models
	Column types

	Relations

	Calculated Fields
	Python properties as fields

	Cascading field changes

	Fields calculated by the database

	Views
	The model to start from

	Definition of the view

	Put into action

	Admin classes
	ObjectAdmin

	EntityAdmin

	Others
	Field Attributes
	Static Field Attributes

	Dynamic Field Attributes

	Overview of the field attributes
	address_validator

	calculator

	create_inline

	column_width

	directory

	editable

	field_name

	file_filter

	length

	minimum

	maximum

	precision

	choices

	minimal_column_width

	prefix

	remove_original

	single_step

	suffix

	tooltip

	translate_content

	background_color

	name

	target

	admin

	address_type

	Customizing multiple field attributes

	Validators

	Customizing the Application
	The Application Admin
	The look of the main window

	Interaction with the Operating System

	The look of the application

	The content of the help menu

	Default behavior of the application

	The look of the form views

	Example

	Example of a reduced application

	Creating Forms
	Form

	Inheritance and Forms

	Putting notes on forms

	Available Form Subclasses

	Customizing Forms
	Layout

	Editors

	Tooltips

	Buttons

	Validation

	Actions
	Introduction

	Summary

	What can happen inside model_run()
	yield events to the GUI

	keep the user informed about progress

	manipulation of the model

	raise exceptions

	handle exceptions

	request information from the user

	Issue SQLAlchemy statements

	States and Modes
	States

	Modes

	Action Context
	Application Actions

	Form Actions

	List Actions

	Reusing List and Form actions

	Available actions

	Inspiration

	Documents and Reports
	Generate documents

	HTML based documents
	Alternative rendering

	Docx based documents
	Create a template document with MS Office

	Clean the XML generated by MS Office

	Replace the placeholders

	Delegates
	Specifying delegates

	Charts
	A simple plot

	Actions

	Advanced Plots

	More

	Document Management
	The File field type

	The StoredFile

	The Storage

	Under the hood
	Global settings

	Setting up the ORM

	Setting up the Database
	Engine

	Metadata

	Creating the tables

	Working without the default model

	Transactions

	Using Camelot without the GUI

	Built in data models
	Modules
	Persons and Organizations

	I18N

	Fixture

	Authentication

	Batch Jobs

	History tracking

	Customization
	Adding fields

	Fixtures : handling static data in the database
	When to update fixtures

	Creating new data

	Update fixtures

	The fixture version

	Managing a Camelot project
	camelot_admin.py

	The Two Threads
	Introduction

	Two Threads

	The Model Thread

	The GUI Thread

	Actions

	Proxy classes

	Application speedup

	Frequently Asked Questions
	How to use the PySide bindings instead of PyQt ?

	Can I use Camelot with an existing database ?

	Why is there no Save button ?

	But my users really want a Save button ?

	Advanced Topics
	Internationalization
	How to Specify Translation Strings

	Translating Camelot itself

	Where to put Translations

	Loading translations

	End user translations

	Unittests

	Deployment
	Building .egg files

	Windows deployment
	Through CloudLaunch

	Using .egg files

	Linux deployment

	Authentication and permissions

	Development Guidlines
	Python, PyQt and Qt objects

	Debugging Camelot and PyQt
	Log the SQL Queries

	Enable core dumps
	Linux

	Windows

	Camelot, Qt, PyQt Licenses
	Camelot License

	GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	PyQt License

	Qt License

	Camelot’s Documentation Copyright

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

Tutorials

This section contains various tutorials that will help the reader get a
feeling of Camelot. We assume that the reader has some knowledge of Python [http://www.python.org].

The reader can read the following sub-sections in any order.

	Creating a Movie Database Application
	Setup Spyder

	Starting a new Camelot project

	Main Window and Views

	Creating the Movie Model

	The EntityAdmin Subclass

	Configuring the Application

	Relationships

	Creating a Report with Camelot
	Massaging the model

	The Summary class

	Using Jinja templates

	Add an import wizard to an application
	Introduction

	Create an action

	Add the action to the GUI

	Select the files

	Create new movies

	Refresh the GUI

	Result

	Unit tests

	Conclusion

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Tutorials

Creating a Movie Database Application

In this tutorial we will create a fully functional movie database application
with Camelot. We assume Camelot is properly installed.
An all in one installer for Windows is available as an SDK to develop Camelot
applications (Python SDK) [http://www.conceptive.be/python-sdk.html].

Setup Spyder

In this section, we will explain how to setup the Spyder IDE for developing
a Camelot project. If you are not using Spyder, you can skip this and
jump to the next section.

Start ‣ All Programs ‣ Python SDK ‣ Spyder

Within Spyder, open the Project Explorer :

View ‣ Windows and toolbars ‣ Project explorer

In the Project Explorer change the workspace directory, to the directory where
you want to put your Camelot Projects.

[image: ../_images/start-spyder.png]
Next, still in the Project Explorer, right click to create a new project using :

New Project

Enter Videostore as the project name.

[image: ../_images/spyder-new-project.png]

Starting a new Camelot project

We begin with the creation of a new Camelot project, using the camelot_admin tool :

Start ‣ All Programs ‣ Python SDK ‣ New Camelot Application

Note

From the command prompt (or shell), go to the directory in which the new project should be created.
Type the following command:

python -m camelot.bin.camelot_admin

A dialog appears where the basic information of the application can be filled in.
Select the newly created Videostore directory as the location of the source code.

[image: ../_images/camelot-new-project.png]
Press OK to generate the source code of the project.
The source code should now appear in the selected directory.

Main Window and Views

To run the application, double click on the main.py file in Spyder, which contains the entry point of your Camelot application and run this file.

Run ‣ Run ‣ Ok

Note

From the command prompt, simply start the script

python main.py

your Qt [http://www.qt-project.org] GUI should look like the one we show in the picture below:

[image: ../_images/main-window.png]
The application has a customizable menu and toolbar, a left navigation pane, and a central
area, where default the Home tab is opened, on which nothing is currently displayed.

The navigation pane has its first section expanded.

[image: ../_images/navigation-pane.png]
The navigation pane uses Sections to group Actions.
Each button in the navigation pane represents a Section, and each entry of the navigation tree is an Action.
Most standard Actions open a single table view of an Entity in a new tab.

Notice that the application disables most of the menus and the toolbar
buttons. When we open a table view, more options become available.

Entities are opened in the active tab, unless
they are opened by selecting Open in New Tab from the context menu (right click)
of the entity link, which will obviously open a new tab to right.
Tabs can be closed by clicking the X in the tab itself.

[image: ../_images/table-view.png]
Each row is a record with some fields that we can edit (others might not be
editable). Let’s now add a new row by clicking on the new icon (icon farthest the
the left in the toolbar above the navigation pane).

[image: ../_images/toolbar.png]
We now see a new window, containing a form view with additional fields.
Forms label required fields in bold.

[image: ../_images/new-form.png]
Fill in a first and last name, and close the form. Camelot will automatically
validate and echo the changes to the database. We can reopen the form by
clicking on the blue folder icon in the first column of each row of the table. Notice
also that there is now an entry in our table.

[image: ../_images/new-record.png]
That’s it for basic usages of the interface. Next we will write code for our
database model.

Creating the Movie Model

Let’s first take a look at the main.py in our project directory.
It contains a my_settings object which is appended to the global settings.
The Global settings object contains the global configuration for things such as database and file location.

Now we can look at model.py. Camelot has already imported some classes
for us. They are used to create our entities. Let’s say we want a movie entity
with a title, a short description, a release date, and a
genre.

The aforementioned specifications translate into the following Python code,
that we add to our model.py module:

from sqlalchemy import Unicode, Date
from sqlalchemy.schema import Column
from camelot.core.orm import Entity
from camelot.admin.entity_admin import EntityAdmin

class Movie(Entity):

 __tablename__ = 'movie'

 title = Column(Unicode(60), nullable = False)
 short_description = Column(Unicode(512))
 release_date = Column(Date())
 genre = Column(Unicode(15))

Note

The complete source code of this tutorial can be found in the
camelot_example folder of the Camelot source code.

Movie inherits camelot.core.orm.Entity, which is the declarative base class for all objects that should be stored in the database.
We use the __tablename__ attribute to to name the table ourselves in which the data will be stored, otherwise a default tablename would have been used.

Our entity holds four fields that are stored in columns in the table.

title = Column(Unicode(60), nullable = False)

title holds up to 60 unicode characters, and cannot be left empty:

short_description = Column(Unicode(512))

short_description can hold up to 512 characters:

release_date = Column(Date())
genre = Column(Unicode(15))

release_date holds a date, and genre up to 15 unicode characters:

For more information about defining models, refer to the SQLAlchemy Declarative extension [http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html].

The different SQLAlchemy [http://www.sqlalchemy.org] column types used are described here [http://docs.sqlalchemy.org/en/rel_0_7/core/types.html].
Finally, custom Camelot fields are documented in the section camelot-column-types.

Let’s now create an EntityAdmin subclass

The EntityAdmin Subclass

We have to tell Camelot about our entities, so they show up in the
GUI.
This is one of the purposes of camelot.admin.entity_admin.EntityAdmin
subclasses. After adding the EntityAdmin subclass, our Movie class now
looks like this:

class Movie(Entity):

 __tablename__ = 'movie'

 title = Column(Unicode(60), nullable = False)
 short_description = Column(Unicode(512))
 release_date = Column(Date())
 genre = Column(Unicode(15))

 def __unicode__(self):
 return self.title or 'Untitled movie'

 class Admin(EntityAdmin):
 verbose_name = 'Movie'
 list_display = ['title', 'short_description', 'release_date', 'genre']

We made Admin an inner class to strengthen the link between it and the
Entity subclass. Camelot does not force us. Assign your EntityAdmin
class to the Admin Entity member to put it somewhere else.

verbose_name will be the label used in navigation trees.

The last attribute is interesting; it holds a list containing the fields we
have defined above. As the name suggests, list_display tells Camelot to
only show the fields specified in the list. list_display fields are also
taken as the default fields to show on a form.

In our case we want to display four fields: title, short_description,
release_date, and genre (that is, all of them.)

The fields displayed on the form can optionally be specified too in the form_display
attribute.

We also add a __unicode__() method that will return either the title of the
movie entity or 'Untitled movie' if title is empty. The __unicode__()
method will be called in case Camelot needs a textual representation of an
object, such as in a window title.

Let’s move onto the last piece of the puzzle.

Configuring the Application

We are now working with application_admin.py.
One of the tasks of application_admin.py is to specify the sections in the left pane of the main window.

The created application has a class, MyApplicationAdmin.
This class is a subclass of camelot.admin.application_admin.ApplicationAdmin, which is used to control the overall look and feel of every Camelot application.

To change sections in the left pane of the main window, simply overwrite the get_sections method, to return a list of the desired sections.
By default this method contains:

def get_sections(self):
 from camelot.model.memento import Memento
 from camelot.model.i18n import Translation
 return [Section(_('My classes'),
 self,
 Icon('tango/22x22/apps/system-users.png'),
 items = []),
 Section(_('Configuration'),
 self,
 Icon('tango/22x22/categories/preferences-system.png'),
 items = [Memento, Translation])
]

which will display two buttons in the navigation pane, labelled 'My classes'
and 'Configurations', with the specified icon next to each label. And yes,
the order matters.

We need to add a new section for our Movie entity, this is done by
extending the list of sections returned by the get_sections method with a
Movie section:

from videostore.model import Movie
return [Section(_('Movie'),
 self,
 Icon('tango/22x22/apps/system-users.png'),
 items = [Movie]),
 Section(_('Configuration'),
 self,
 Icon('tango/22x22/categories/preferences-system.png'),
 items = [Memento, Translation])
]

The constructor of a section object takes the name of the section, a reference
to the application admin object, the icon to be used and the items in the
section. The items is a list of the entities for which a table view should
shown.

Camelot comes with the Tango [http://tango.freedesktop.org/Tango_Icon_Library]
icon collection; we use a suitable icon for our movie section.

We can now try our application.

We see a new button the navigation pane labelled ‘Movies’. Clicking on it
fills the navigation tree with the only entity in the movies’s section.
Clicking on this tree entry opens the table view. And if we click on the blue
folder of each record, a form view appears as shown below.

[image: ../_images/movie-table.png]
That’s it for the basics of defining an entity and setting it for display in
Camelot. Next we look at relationships between entities.

Relationships

We will be using SQLAlchemy’s sqlalchemy.orm.relationship API. We’ll
relate a director to each movie. So first we need a Director entity. We
define it as follows:

class Director(Entity):

 __tablename__ = 'director'

 name = Column(Unicode(60))

Even if we define only the name column, Camelot adds an id column
containing the primary key of the Director Entity. It does so because we
did not define a primary key ourselves. This primary key is an integer number,
unique for each row in the director table, and as such unique for each
Director object.

Next, we add a reference to this primary key in the movie table, this is called
the foreign key. This foreign key column, called director_id will be an
integer number as well, with the added constraint that it can only contain
values that are present in the director table its id column.

Because the director_id column is only an integer, we need to add the
director attribute of type relationship. This will allow us to use
the director property as a Director object related to a Movie
object. The relationship attribute will find out about the director_id
column and use it to attach a Director object to a Movie object

from sqlalchemy.schema import ForeignKey
from sqlalchemy.orm import relationship

class Movie(Entity):

 __tablename__ = 'movie'

 title = Column(Unicode(60), nullable = False)
 short_description = Column(Unicode(512))
 release_date = Column(Date())
 genre = Column(Unicode(15))

 director_id = Column(Integer, ForeignKey('director.id'))
 director = relationship('Director',
 backref = 'movies')

 class Admin(EntityAdmin):
 verbose_name = 'Movie'
 list_display = ['title',
 'short_description',
 'release_date',
 'genre',
 'director']

 def __unicode__(self):
 return self.title or 'untitled movie'

We also inserted 'director' in list_display.

To be able to have the movies accessible from a director, a backref is
defined in the director relationship. This will result in a movies
attribute for each director, containing a list of movie objects.

Our Director entity needs an administration class as well. We will also
add __unicode__() method as suggested above. The entity now looks as
follows:

class Director(Entity):
 __tablename__ = 'director'

 name = Column(Unicode(60))

 class Admin(EntityAdmin):
 verbose_name = 'Director'
 list_display = ['name']
 form_display = list_display + ['movies']

 def __unicode__(self):
 return self.name or 'unknown director'

Note

Whenever the model changes, the database needs to be updated.
This can be done by hand, or by dropping and recreating the database (or deleting the sqlite file).
By default Camelot stores the data in an local directory specified by the operating system.
Look in the startup logs to see where they are stored on your system, look for a line like

[INFO] [camelot.core.conf] - store database and media in /home/username/.camelot/videostore

For completeness the two entities are once again listed below:

class Movie(Entity):

 __tablename__ = 'movie'

 title = Column(Unicode(60), nullable = False)
 short_description = Column(Unicode(512))
 release_date = Column(Date())
 genre = Column(Unicode(15))

 director_id = Column(Integer, ForeignKey('director.id'))
 director = relationship('Director',
 backref = 'movies')

 class Admin(EntityAdmin):
 verbose_name = 'Movie'
 list_display = ['title',
 'short_description',
 'release_date',
 'genre',
 'director']

 def __unicode__(self):
 return self.title or 'untitled movie'

class Director(Entity):
 __tablename__ = 'director'

 name = Column(Unicode(60))

 class Admin(EntityAdmin):
 verbose_name = 'Director'
 list_display = ['name']
 form_display = list_display + ['movies']

 def __unicode__(self):
 return self.name or 'unknown director'

The last step is to fix application_admin.py by adding the following
lines to the Director entity to the Movie section:

Section('Movies',
 self,
 Icon('tango/22x22/mimetypes/x-office-presentation.png'),
 items = [Movie, Director])

This takes care of the relationship between our two entities.

We have just learned the basics of Camelot, and have a nice movie database
application we can play with. In another tutorial, we will learn more advanced
features of Camelot.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Tutorials

Creating a Report with Camelot

With the Movie Database Application as our starting point, we’re going to use
the reporting framework in this tutorial. We will create a report of each
movie, which we can access from the movie detail page.

Massaging the model

First of all we need to create a button to access our report. This is easily
done by specifying a form_action, right in the Admin subclass of the model.
Our appended code will be:

form_actions = [MovieSummary()]

The action is described in the MovieSummary class, which we’ll discuss next.
Note that it needs to imported, obviously:

from movie_summary import MovieSummary

So the movie model admin will look like this:

class Admin(EntityAdmin):
 from movie_summary import MovieSummary
 verbose_name = _('Movie')
 list_display = [
 'title',
 'short_description',
 'release_date',
 'genre',
 'director'
]
 form_display = [
 'title',
 'cover_image',
 'short_description',
 'release_date',
 'genre',
 'director'
]
 form_actions = [
 MovieSummary()
]

The Summary class

In the MovieSummary class, which is a child class of
camelot.admin.action.base.Action, we need to override just one method;
the model_run() method, which has the model_context object as its
argument. This makes accessing the Movie object very easy as we’ll see in a
minute. The model_run method will yield ..., have a guess.... Exactly,
a print preview:

 class MovieSummary(Action):

 verbose_name = _('Summary')

 def model_run(self, model_context):
 from camelot.view.action_steps import PrintHtml
 movie = model_context.get_object()
 yield PrintHtml("<h1>This will become the movie report of %s!</h1>" % movie.title)

You can already test this. You should see a button in the “Actions” section, on
the right of the Movie detail page. Click this and a print preview should open
with the text you let the html method return.

[image: ../_images/action_button.png]
[image: ../_images/simple_report.png]
Now let’s make it a bit fancier.

Using Jinja templates

Install and add Jinja2 to your PYTHONPATH. You can find it here:
http://jinja.pocoo.org/2/ or at the cheeseshop
http://pypi.python.org/pypi/Jinja2 . Now let’s use its awesome powers.

First we’ll make a base template. This will determine our look and feel for all
the report pages. This is basically html and css with block definitions.
Later we’ll create the page movie summary template which will contain our model
data. The movie summary template will inherit the base template, and provide
content for the aforementioned blocks. The base template could look something
like:

<html>
<head>
 <title>{% block page_head_title %}{% endblock %}</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <style type="text/css">
body, html {
 font-family: Verdana, Arial, sans-serif;
}
{% block styles %}{% endblock %}
 </style>
</head>
<body>

<table id="page_header" width="100%">
 <tr>
 <td><h1>{% block page_header %}{% endblock %}</h1></td>
 <td align="right">{% block page_header_right %}{% endblock %}</td>
 </tr>

</table>
<hr>
<h2 id="page_title"><center>{% block page_title %}{% endblock %}</center></h2>
<hr>
{% block page_content %}{% endblock %}
<hr>
<div id="page_footer">{% block page_footer %}{% endblock %}</div>

</body>
</html>

We’ll save this file as base.html in a directory called templates in our
videostore. Like this base template, the movie summary template is html and
css. Take a look at the example first:

{% extends 'base.html' %}
{% block styles %}{{ style }}{% endblock %}
{% block page_head_title %}{{ title }}{% endblock %}
{% block page_title %}{{ title }}{% endblock %}
{% block page_header %}{{ header }}{% endblock %}
{% block page_header_right %}
{% if cover %}

{% else %}
 (no cover)
{% endif %}
{% endblock %}
{% block page_content %}{{ content }}{% endblock %}
{% block page_footer %}{{ footer }}{% endblock %}

First we extend the base template, that way we don’t need to worry about the
boilerplate stuff, and keep our pages consistent, provided we create more
reports of course. We can now fill in the blanks, erm blocks from the base
template. We do that with placeholders which we’ll define in the html method of
our MovieSummary class. This way we can even add style to the page:

{% block styles %}{{ style }}{% endblock %}

We’ll define this later. The templating language also allows basic flow
control:

{% if cover %}

{% else %}
 (no cover)
{% endif %}

If there is no cover image, we’ll show the string “(no cover)”.
We’ll save this file as movie_summary.html in the templates directory.

Like i said earlier, we now need to define which values will go in the
placeholders, so let’s update our html method in the MovieSummary class.
First, we import the needed elements:

import datetime
from jinja import Environment, FileSystemLoader
from pkg_resources import resource_filename
import videostore
from camelot.core.conf import settings

We’ll be printing a date, so we’ll need datetime. The Jinja classes to make use
of our templates. And to locate our templates, we’ll use the resource module,
with our videostore. And load up the Jinja environment ...

fileloader = FileSystemLoader(resource_filename(videostore.__name__, 'templates'))
e = Environment(loader=fileloader)

Now we need to create a context dictionary to provide data to the templates.
The keys of this dictionary are the placeholders we used in our movie_summary
template, the values we can use from the model, which is passed as the o
argument in the html method:

context = {
'header':o.title,
'title':'Movie Summary',
'style':'.label { font-weight:bold; }',
'content':'Description: %s
\
 Release date: %s
\
 Genre: %s
\
 Director: %s'
 % (o.short_description, o.release_date, o.genre, o.director),
'cover': os.path.join(settings.CAMELOT_MEDIA_ROOT(), 'covers', o.cover_image.name),
'footer':'
copyright %s - Camelot' % datetime.datetime.now().year
}

Plain old Python dictionary. Check it out, we can even pass css in our setup.

Finally, we’ll get the template from the Jinja environment and return the
rendered result of our context:

t = e.get_template('movie_summary.html')
return t.render(context)

So our finished method eventually looks like this:

from camelot.admin.action import Action

class MovieSummary(Action):

 verbose_name = _('Summary')

 def model_run(self, model_context):
 from camelot.view.action_steps import PrintHtml
 import datetime
 import os
 from jinja import Environment, FileSystemLoader
 from pkg_resources import resource_filename
 import videostore
 from camelot.core.conf import settings

 fileloader = FileSystemLoader(resource_filename(videostore.__name__, 'templates'))
 e = Environment(loader=fileloader)
 movie = model_context.get_object()
 context = {
 'header':movie.title,
 'title':'Movie Summary',
 'style':'.label { font-weight:bold; }',
 'content':'Description: %s
\
 Release date: %s
\
 Genre: %s
\
 Director: %s'
 % (movie.short_description, movie.release_date, movie.genre, movie.director),
 'cover': os.path.join(settings.CAMELOT_MEDIA_ROOT(), 'covers', movie.cover_image.name),
 'footer':'
copyright %s - Camelot' % datetime.datetime.now().year
 }
 t = e.get_template('movie_summary.html')
 yield PrintHtml(t.render(context))

What are you waiting for? Go try it out! You should see something like this:

[image: ../_images/final_report.png]

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Tutorials

Add an import wizard to an application

In this tutorial we will add an import wizard to the movie database
application created in the Creating a Movie Database Application tutorial.

We assume Camelot is properly installed and the movie
database application is working.

[image: _static/controls/main_window.png]

Introduction

Most applications need a way to import data. This data is often delivered
in files generated by another application or company. To demonstrate this
process we will build a wizard that allows the user to import cover images
into the movie database. For each image the user selects, a new Movie will
be created with the selected image as a cover image.

Create an action

All user interaction in Camelot is handled through Actions. For
actions that run in the context of the application, we use the
Application Actions. We first create a file importer.py in
the same directory as application_admin.py.

In this file we create subclass of camelot.admin.action.Action which
will be the entry point of the import wizard:

from camelot.admin.action import Action
from camelot.core.utils import ugettext_lazy as _

class ImportCovers(Action):
 verbose_name = _('Import cover images')

 def model_run(self, model_context):
 yield

So now we haven an ImportCovers action. Such an action has a
verbose_name class attribute with the name of the action as shown to the
user.

The most important method of the action is the model_run method, which
will be triggered when the user clicks the action. This method should be a
generator that yields an object whenever user interaction is required.
Everything that happens inside the model_run method happens in a different
thread than the GUI thread, so it will not block the GUI.

Add the action to the GUI

Now the user needs to be able to trigger the action. We edit the
application_admin.py file and make sure the ImportCoversAction
is imported.

 from camelot_example.importer import ImportCovers

Then we add an instance of the ImportCovers action to the sections
defined in the get_sections method of the ApplicationAdmin:

 Section(_('Movies'),
 self,
 Icon('tango/22x22/mimetypes/x-office-presentation.png'),
 items = [Movie,
 Tag,
 VisitorReport,
VisitorsPerDirector,
 ImportCovers()]),

This will make sure the action pops up in the Movies section of the
application.

[image: _static/controls/navigation_pane.png]

Select the files

To make the action do something useful, we will implement its model_run
method. Inside the model_run method, we can yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] various
camelot.admin.action.base.ActionStep objects to the GUI. An ActionStep
is a part of the action that requires user interaction (the user answering
a question). The result of this interaction is returned by the
yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] statement.

To ask the user for a number of image files to import, we will pop up a file
selection dialog inside the model_run method:

 def model_run(self, model_context):
 from camelot.view.action_steps import (SelectFile,
 UpdateProgress,
 Refresh,
 FlushSession)

 select_image_files = SelectFile('Image Files (*.png *.jpg);;All Files (*)')
 select_image_files.single = False
 file_names = yield select_image_files
 file_count = len(file_names)

The yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] statement returns a list of file names selected by
the user.

[image: _static/actionsteps/select_file.png]

Create new movies

First make sure the Movie class has an camelot.types.Image field
named cover which will store the image files.

 cover = Column(camelot.types.Image(upload_to = 'covers'))

Next we add to the model_run method the actual creation of new movies.

 import os
 from sqlalchemy import orm
 from camelot.core.orm import Session
 from camelot_example.model import Movie

 movie_mapper = orm.class_mapper(Movie)
 cover_property = movie_mapper.get_property('cover')
 storage = cover_property.columns[0].type.storage
 session = Session()

 for i, file_name in enumerate(file_names):
 yield UpdateProgress(i, file_count)
 title = os.path.splitext(os.path.basename(file_name))[0]
 stored_file = storage.checkin(unicode(file_name))
 movie = Movie(title = unicode(title))
 movie.cover = stored_file

 yield FlushSession(session)

In this part of the code several things happen :

Store the images

In the first lines, we do some sqlalchemy magic to get access to the
storage attribute of the cover field. This storage attribute
is of type camelot.core.files.storage.Storage. The Storage
represents the files managed by Camelot.

Create Movie objects

Then for each file, a new Movie object is created with as title the
name of the file. For the cover attribute, the file is checked in into
the Storage. This actually means the file is copied from its original
directory to a directory managed by Camelot.

Write to the database

In the last line, the session is flushed and thus all changes are
written to the database. The camelot.view.action_steps.orm.FlushSession action step flushes the session
and propagetes the changes to the GUI.

Keep the user informed

For each movie imported, a camelot.view.action_steps.update_progress.UpdateProgress
object is yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] to the GUI to inform the user of the import progress.
Each time such an object is yielded, the progress bar is updated.

[image: _static/controls/progress_dialog.png]

Refresh the GUI

The last step of the model_run method will be to refresh the GUI. So if
the user has the Movies table open when importing, this table will show the
newly created movies.

 yield Refresh()

Result

This is how the resulting importer.py file looks like :

from camelot.admin.action import Action
from camelot.core.utils import ugettext_lazy as _
from camelot.view.art import Icon

class ImportCovers(Action):
 verbose_name = _('Import cover images')
 icon = Icon('tango/22x22/mimetypes/image-x-generic.png')

begin select files
 def model_run(self, model_context):
 from camelot.view.action_steps import (SelectFile,
 UpdateProgress,
 Refresh,
 FlushSession)

 select_image_files = SelectFile('Image Files (*.png *.jpg);;All Files (*)')
 select_image_files.single = False
 file_names = yield select_image_files
 file_count = len(file_names)
end select files
begin create movies
 import os
 from sqlalchemy import orm
 from camelot.core.orm import Session
 from camelot_example.model import Movie

 movie_mapper = orm.class_mapper(Movie)
 cover_property = movie_mapper.get_property('cover')
 storage = cover_property.columns[0].type.storage
 session = Session()

 for i, file_name in enumerate(file_names):
 yield UpdateProgress(i, file_count)
 title = os.path.splitext(os.path.basename(file_name))[0]
 stored_file = storage.checkin(unicode(file_name))
 movie = Movie(title = unicode(title))
 movie.cover = stored_file

 yield FlushSession(session)
end create movies
begin refresh
 yield Refresh()
end refresh

Unit tests

Once an action works, its important to keep it working as the development of
the application continues. One of the advantages of working with generators
for the user interaction, is that its easy to simulate the user interaction
towards the model_run() method of the action. This is done by using
the send() method of the generator that is returned when calling
model_run() :

 def test_example_application_action(self):
 from camelot_example.importer import ImportCovers
 from camelot_example.model import Movie
 # count the number of movies before the import
 movies = Movie.query.count()
 # create an import action
 action = ImportCovers()
 generator = action.model_run(None)
 select_file = generator.next()
 self.assertFalse(select_file.single)
 # pretend the user selected a file
 generator.send([os.path.join(os.path.dirname(__file__), '..', 'camelot_example', 'media', 'covers', 'circus.png')])
 # continue the action till the end
 list(generator)
 # a movie should be inserted
 self.assertEqual(movies + 1, Movie.query.count())

Conclusion

We went through the basics of the action framework Camelot :

	Subclassing a camelot.admin.action.Action
class

	Implementing the model_run method

	yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] camelot.admin.action.base.ActionStep objects to
interact with the user

	Add the camelot.admin.action.base.Action object to a
camelot.admin.section.Section in the side pane

More camelot.admin.action.base.ActionStep classes can be found in
the camelot.view.action_steps module.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

Camelot Documentation

This is the reference documentation for developing projects using the Camelot
library. The first time Camelot developer is encouraged to read
Creating models and Admin classes.

The section The Two Threads is for developers whishing to maintain a
responsive UI when faced with significant delays in their application code.

All other sections can be read on an as needed base.

	Camelot Installation
	All in one Windows installer

	From the Python Package Index

	Packages

	From source

	Verifiy the installation

	Creating models
	Column types

	Relations

	Calculated Fields
	Python properties as fields

	Cascading field changes

	Fields calculated by the database

	Views
	The model to start from

	Definition of the view

	Put into action

	Admin classes
	ObjectAdmin

	EntityAdmin

	Others
	Field Attributes
	Static Field Attributes

	Dynamic Field Attributes

	Overview of the field attributes
	address_validator

	calculator

	create_inline

	column_width

	directory

	editable

	field_name

	file_filter

	length

	minimum

	maximum

	precision

	choices

	minimal_column_width

	prefix

	remove_original

	single_step

	suffix

	tooltip

	translate_content

	background_color

	name

	target

	admin

	address_type

	Customizing multiple field attributes

	Validators

	Customizing the Application
	The Application Admin
	The look of the main window

	Interaction with the Operating System

	The look of the application

	The content of the help menu

	Default behavior of the application

	The look of the form views

	Example

	Example of a reduced application

	Creating Forms
	Form

	Inheritance and Forms

	Putting notes on forms

	Available Form Subclasses

	Customizing Forms
	Layout

	Editors

	Tooltips

	Buttons

	Validation

	Actions
	Introduction

	Summary

	What can happen inside model_run()
	yield events to the GUI

	keep the user informed about progress

	manipulation of the model

	raise exceptions

	handle exceptions

	request information from the user

	Issue SQLAlchemy statements

	States and Modes
	States

	Modes

	Action Context
	Application Actions

	Form Actions

	List Actions

	Reusing List and Form actions

	Available actions

	Inspiration

	Documents and Reports
	Generate documents

	HTML based documents
	Alternative rendering

	Docx based documents
	Create a template document with MS Office

	Clean the XML generated by MS Office

	Replace the placeholders

	Delegates
	Specifying delegates

	Charts
	A simple plot

	Actions

	Advanced Plots

	More

	Document Management
	The File field type

	The StoredFile

	The Storage

	Under the hood
	Global settings

	Setting up the ORM

	Setting up the Database
	Engine

	Metadata

	Creating the tables

	Working without the default model

	Transactions

	Using Camelot without the GUI

	Built in data models
	Modules
	Persons and Organizations

	I18N

	Fixture

	Authentication

	Batch Jobs

	History tracking

	Customization
	Adding fields

	Fixtures : handling static data in the database
	When to update fixtures

	Creating new data

	Update fixtures

	The fixture version

	Managing a Camelot project
	camelot_admin.py

	The Two Threads
	Introduction

	Two Threads

	The Model Thread

	The GUI Thread

	Actions

	Proxy classes

	Application speedup

	Frequently Asked Questions
	How to use the PySide bindings instead of PyQt ?

	Can I use Camelot with an existing database ?

	Why is there no Save button ?

	But my users really want a Save button ?

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Camelot Installation

All in one Windows installer

When working on Windows, the easiest way to get up and running is through
the Conceptive Python SDK [http://www.conceptive.be/python-sdk.htm].

[image: ../_images/cpd_installer1.png]
This SDK is a Python distribution targeted at the development and deployment of QT
based applications. This all in one installation of Camelot with all its
dependencies is available in the shop [http://www.conceptive.be/shop.html].

From the Python Package Index

First, make sure you have setup tools installed, Setup tools [http://pypi.python.org/pypi/setuptools].
If you are using a debian based distribution, you can type:

sudo apt-get install python-setuptools

Then use easy_install to install Camelot, under Linux this would be done by typing:

sudo easy_install camelot

Packages

Linux distributions often offer packages for various applications, including
Camelot and its dependencies :

	OpenSUSE build service [https://build.opensuse.org/project/show?project=home%3Afrispete%3APyQt].

From source

When installing Camelot from source, you need to make sure all dependencies
are installed and available in your PYTHONPATH.

Dependencies

In addition to PyQt 4.8 and Qt 4.8, Camelot needs these libraries :

SQLAlchemy==0.8.0
Jinja2==2.6
chardet==2.1.1
xlwt==0.7.4
xlrd==0.9.0

Releases

The source code of a release can be downloaded from the
Python Package Index [http://pypi.python.org/pypi/Camelot/] and then
extracted:

tar xzvf Camelot-10.07.02.tar.gz

Repository

The latest and greatest version of the source can be checked out
from the Bitbucket repository:

hg clone https://bitbucket.org/conceptive/camelot

Adapting PYTHONPATH

You need to make sure Camelot and all its dependencies are in the PYTHONPATH
before you start using it.

Verifiy the installation

To verify if you have Camelot installed and available in the PYTHONPATH, fire up a
python interpreter:

python

and issue these commands:

>>> import camelot
>>> print camelot.__version__
>>> import sqlalchemy
>>> print sqlalchemy.__version__
>>> import PyQt4

None of them should raise an ImportError.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Creating models

Camelot makes it easy to create views for any type of Python objects.

SQLAlchemy is a very powerful Object Relational Mapper (ORM) with lots of possibilities for handling
simple or sophisticated datastructures. The SQLAlchemy website [http://www.sqlalchemy.org] has extensive
documentation on all these features. An important part of Camelot is providing an easy way to
create views for objects mapped through SQLAlchemy.

SQLAlchemy comes with the Declarative [http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html]
extension to make it easy to define an ORM mapping using the Active Record Pattern. This is used through the
documentation and in the example code.

To use Declarative, threre are some base classes that should be imported:

from camelot.core.orm import Entity
from camelot.admin.entity_admin import EntityAdmin

from sqlalchemy import sql
from sqlalchemy.schema import Column
import sqlalchemy.types

Those are :

	camelot.core.orm.Entity is the declarative base class provided by Camelot for all classes that are mapped to the database,
and is a subclass of camelot.core.orm.entity.EntityBase

	camelot.admin.entity_admin.EntityAdmin is the base class that describes how an Entity subclass should be represented in the GUI

	sqlalchemy.schema.Column [http://docs.sqlalchemy.org/en/rel_0_8/core/schema.html#sqlalchemy.schema.Column] describes a column in the database and a field in the model

	sqlalchemy.types [http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types] contains the various column types that can be used

Next a model can be defined:

class Tag(Entity):

 __tablename__ = 'tags'

 name = Column(sqlalchemy.types.Unicode(60), nullable = False)
 movies = ManyToMany('Movie',
 tablename = 'tags_movies__movies_tags',
 local_colname = 'movies_id',
 remote_colname = 'tags_id')

 def __unicode__(self):
 return self.name

 class Admin(EntityAdmin):
 form_size = (400,200)
 list_display = ['name']

begin visitor report definition

The code above defines the model for a Tag class, an object with only a name that can be related to other
ojbects later on. This code has some things to notice :

	Tag is a subclass of camelot.core.orm.Entity,

	the __tablename__ class attribute allows us to specify the name of the table in the database in which
the tags will be stored.

	The sqlalchemy.schema.Column [http://docs.sqlalchemy.org/en/rel_0_8/core/schema.html#sqlalchemy.schema.Column] statement add fields of a certain type,
in this case sqlalchemy.types.Unicode [http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types.Unicode],
to the Tag class as well as to the tags table

	The __unicode__ method is implemented, this method will be called within Camelot whenever a textual
representation of the object is needed, eg in a window title or a many to one widget. It’s good
practice to always implement the __unicode__ method for all Entity subclasses.

When a new Camelot project is created, the camelot-admin tool creates an empty models.py file that
can be used as a place to start the model definition.

	Column types

	Relations

	Calculated Fields
	Python properties as fields

	Cascading field changes

	Fields calculated by the database

	Views
	The model to start from

	Definition of the view

	Put into action

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Creating models

Column types

SQLAlchemy comes with a set of column types that can be used. These column types will trigger the
use of a certain QtGui.QDelegate to visualize them in the views. Camelot extends those SQLAlchemy
field types with some of its own.

An overview of field types from SQLAlchemy and Camelot is given in the table below :

All SQLAlchemy field types can be found in the sqlalchemy.types [http://docs.sqlalchemy.org/en/rel_0_8/core/types.html#sqlalchemy.types] module.
All additional Camelot field types can be found in the camelot.types module.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Creating models

Relations

SQLAlchemy uses the relationship function to define relations between classes.
This function can be used within Camelot as well.

On top of this, Camelot provides some construct in the camelot.core.orm.relationships that make setting up relationships a bit easier.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Creating models

Calculated Fields

To display fields in forms that are not stored into the database but, are
calculated at run time, two main options exist. Either those fields are
calculated within the database or they are calculated by Python. Normal Python
properties can be used to do the calculation in Python, whereas ColumnProperties
can be used to do the logic in the database.

Python properties as fields

Normal python properties can be used as fields on forms as well. In that case, there
will be no introspection to find out how to display the property. Therefore the delegate
(Specifying delegates) attribute should be specified explicitly.

import math

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

class Coordinate(object):

 def __init__(self, x = 0, y = 0):
 self.id = 1
 self.x = x
 self.y = y

 @property
 def r(self):
 return math.sqr(self.x**2, self.y**2)

 class Admin(ObjectAdmin):
 form_display = ['x', 'y', 'r']
 field_attributes = dict(x = dict(delegate = delegates.FloatDelegate,
 editable = True),
 y = dict(delegate = delegates.FloatDelegate,
 editable = True),
 r = dict(delegate = delegates.FloatDelegate))

By default, python properties are read-only. They have to be set to editable through
the field attributes to make them writeable by the user.

Properties are also used to summarize information from multiple attributes and
put them in a single field.

Cascading field changes

Whenever the value of a field is changed, this change can cascade through the model by
using properties to manipulate the field instead of manipulating it directly. The
example below demonstrates how the value of y should be chopped when x is changed.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

class Coordinate(object):

 def __init__(self):
 self.id = 1
 self.x = 0.0
 self.y = 0.0

 def _get_x(self):
 return self.x

 def _set_x(self, x):
 self.x = x
 self.y = max(self.y,x)

 _x = property(_get_x, _set_x)

 class Admin(ObjectAdmin):
 form_display = ['_x', 'y',]
 field_attributes = dict(_x=dict(delegate=delegates.FloatDelegate, name='x'),
 y=dict(delegate=delegates.FloatDelegate),)
 form_size = (100,100)

[image: doc/../_static/snippets/fields_with_actions.png]

Fields calculated by the database

Having certain summary fields of your models filled by the database has the advantage
that the heavy processing is moved from the client to the server. Moreover if the
summary builds on information in related records, having the database build the summary
reduces the need to transfer additional data from the database to the server.

To display fields in the table and the form view that are the result of a calculation
done by the database, a camelot.core.orm.properties.ColumnProperty needs to be defined in the Declarative model. In this
column property, the sql query can be defined using SQLAlchemy statements. In this example, the Movie class gains the
total_visitors attribute which contains the sum of all visitors that went to a movie.

 @ColumnProperty
 def total_visitors(self):
 return sql.select([sql.func.sum(VisitorReport.visitors)],
 VisitorReport.movie_id == self.id)

It’s important to notice that the value of this field is calculated when the object is fetched from the database. When the user presses F9,
all data in the application is refreshed from the database, and thus all column properties are recalculated.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Creating models

Views

Traditionally, in database land, views are queries defined at the database
level that act like read-only tables. They allow reuse of common queries
across an application, and are very suitable for reporting.

Using SQLAlchemy this traditional approach can be used, but a more dynamic
approach is possible as well. We can map arbitrary queries to an object,
and then visualize these objects with Camelot.

The model to start from

[image: doc/../_static/entityviews/table_view_visitorreport.png]
In the example movie project, we can take three parts of the model : Person,
Movie and VisitorReport:

class Person(Party):
 """Person represents natural persons
 """
 using_options(tablename = 'person')
 party_id = Field(camelot.types.PrimaryKey(),
 ForeignKey('party.id'),
 primary_key = True)
 __mapper_args__ = {'polymorphic_identity': u'person'}
 first_name = Field(Unicode(40), required = True)
 last_name = Field(Unicode(40), required = True)

There is a relation between Person and Movie through the director attribute:

class Movie(Entity):

 __tablename__ = 'movies'

 title = Column(sqlalchemy.types.Unicode(60), nullable = False)
 short_description = Column(sqlalchemy.types.Unicode(512))
 releasedate = Column(sqlalchemy.types.Date)
 genre = Column(sqlalchemy.types.Unicode(15))
 rating = Column(camelot.types.Rating())
 #
 # All relation types are covered with their own editor
 #
 director = ManyToOne('Person')
 cast = OneToMany('Cast')
 visitor_reports = OneToMany('VisitorReport', cascade='delete')
 tags = ManyToMany('Tag',
 tablename = 'tags_movies__movies_tags',
 local_colname = 'tags_id',
 remote_colname = 'movies_id')

And a relation between Movie and VisitorReport:

class VisitorReport(Entity):

 __tablename__ = 'visitor_report'

 date = Column(sqlalchemy.types.Date,
 nullable = False,
 default = datetime.date.today)
 visitors = Column(sqlalchemy.types.Integer,
 nullable = False,
 default = 0)
 movie = ManyToOne('Movie', required = True)

[image: doc/../_static/entityviews/table_view_visitorreport.png]

Definition of the view

Suppose, we now want to display a table with the total numbers of visitors
for all movies of a director.

We first define a plain old Python class that represents the expected results :

class VisitorsPerDirector(object):

 class Admin(EntityAdmin):
 verbose_name = _('Visitors per director')
 list_display = table.Table([table.ColumnGroup(_('Name and Visitors'), ['first_name', 'last_name', 'visitors']),
 table.ColumnGroup(_('Official'), ['birthdate', 'social_security_number', 'passport_number'])]
)
end column group

Then define a function that maps the query that calculates those results
to the plain old Python object :

def setup_views():
 from sqlalchemy.sql import select, func, and_
 from sqlalchemy.orm import mapper

 from camelot.model.party import Person
 from camelot_example.model import Movie, VisitorReport

 s = select([Person.party_id,
 Person.first_name.label('first_name'),
 Person.last_name.label('last_name'),
 Person.birthdate.label('birthdate'),
 Person.social_security_number.label('social_security_number'),
 Person.passport_number.label('passport_number'),
 func.sum(VisitorReport.visitors).label('visitors'),],
 whereclause = and_(Person.party_id == Movie.director_party_id,
 Movie.id == VisitorReport.movie_id),
 group_by = [Person.party_id,
 Person.first_name,
 Person.last_name,
 Person.birthdate,
 Person.social_security_number,
 Person.passport_number,])

 s=s.alias('visitors_per_director')

 mapper(VisitorsPerDirector, s, always_refresh=True)

Put all this in a file called view.py

Put into action

Then make sure the plain old Python object is mapped to the query, just after
the Elixir model has been setup, by modifying the setup_model function in
settings.py:

 def setup_model():
 from sqlalchemy.orm import configure_mappers
 from camelot.core.sql import metadata
 metadata.bind = settings.ENGINE()
 import camelot.model.party
 import camelot.model.authentication
 import camelot.model.i18n
 import camelot.model.fixture
 import camelot.model.memento
 import camelot.model.batch_job
 import camelot_example.model
 #
 # create the tables for all models, configure mappers first, to make
 # sure all deferred properties have been handled, as those could
 # create tables or columns
 #
 configure_mappers()
 metadata.create_all()
 from camelot.model.authentication import update_last_login
 #update_last_login()
 #
 # Load sample data with the fixure mechanism
 #
 from camelot_example.fixtures import load_movie_fixtures
 load_movie_fixtures()
 #
 # setup the views
 #
 from camelot_example.view import setup_views
 setup_views()

And add the plain old Python object to a section in the ApplicationAdmin:

 def get_sections(self):

 from camelot.model.batch_job import BatchJob
 from camelot.model.memento import Memento
 from camelot.model.party import (Person, Organization,
 PartyCategory)
 from camelot.model.i18n import Translation
 from camelot.model.batch_job import BatchJob, BatchJobType

 from camelot_example.model import Movie, Tag, VisitorReport
 from camelot_example.view import VisitorsPerDirector
begin import action
 from camelot_example.importer import ImportCovers
end import action

 return [
begin section with action
 Section(_('Movies'),
 self,
 Icon('tango/22x22/mimetypes/x-office-presentation.png'),
 items = [Movie,
 Tag,
 VisitorReport,
VisitorsPerDirector,
 ImportCovers()]),
end section with action
 Section(_('Relation'),
 self,
 Icon('tango/22x22/apps/system-users.png'),
 items = [Person,
 Organization,
 PartyCategory]),
 Section(_('Configuration'),
 self,
 Icon('tango/22x22/categories/preferences-system.png'),
 items = [Memento,
 Translation,
 BatchJobType,
 BatchJob
])
]

[image: doc/../_static/entityviews/table_view_visitorsperdirector.png]

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Admin classes

The Admin classes are the classes that specify how objects should be visualized, they define the look, feel and behaviour of the Application.
Most of the behaviour of the Admin classes can be tuned by changing their class attributes.
This makes it easy to subclass a default Admin class and tune it to your needs.

[image: ../_images/admin_classes.png]

ObjectAdmin

Camelot is able to visualize any Python object, through the use of the camelot.admin.object_admin.ObjectAdmin
class. However, subclasses exist that use introspection to facilitate the visualisation.

Each class that is visualized within Camelot has an associated Admin class which specifies how the object or a list of objects should be visualized.

Usually the Admin class is bound to the model class by defining it as an inner class of the model class:

class Options(object):
 """A python object in which we store the change in rating
 """

 def __init__(self):
 self.only_selected = True
 self.change = 1

 # Since Options is a plain old python object, we cannot
 # use an EntityAdmin, and should use the ObjectAdmin
 class Admin(ObjectAdmin):
 verbose_name = _('Change rating options')
 form_display = ['change', 'only_selected']
 form_size = (100, 100)
 # Since there is no introspection, the delegate should
 # be specified explicitely, and set to editable
 field_attributes = {'only_selected':{'delegate':delegates.BoolDelegate,
 'editable':True},
 'change':{'delegate':delegates.IntegerDelegate,
 'editable':True},
 }

begin change rating action definition

Most of the behaviour of the Admin class can be customized by changing the class attributes like verbose_name, list_display and form_display.

Other Admin classes can inherit ObjectAdmin if they want to provide additional functionallity, like introspection to set default field attributes.

EntityAdmin

The camelot.admin.entity_admin.EntityAdmin class is a subclass of ObjectAdmin that can be used to visualize objects mapped to a database using SQLAlchemy.

The EntityAdmin uses introspection of the model to guess the default field attributes.
This makes the definition of an Admin class less verbose.

class Tag(Entity):

 __tablename__ = 'tags'

 name = Column(sqlalchemy.types.Unicode(60), nullable = False)
 movies = ManyToMany('Movie',
 tablename = 'tags_movies__movies_tags',
 local_colname = 'movies_id',
 remote_colname = 'tags_id')

 def __unicode__(self):
 return self.name

 class Admin(EntityAdmin):
 form_size = (400,200)
 list_display = ['name']

begin visitor report definition

The camelot.admin.entity_admin.EntityAdmin provides some additonal attributes on top of those
provided by camelot.admin.object_admin.ObjectAdmin, such as list_filter and list_search

Others

	Field Attributes
	Static Field Attributes

	Dynamic Field Attributes

	Overview of the field attributes
	address_validator

	calculator

	create_inline

	column_width

	directory

	editable

	field_name

	file_filter

	length

	minimum

	maximum

	precision

	choices

	minimal_column_width

	prefix

	remove_original

	single_step

	suffix

	tooltip

	translate_content

	background_color

	name

	target

	admin

	address_type

	Customizing multiple field attributes

	Validators

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Admin classes

Field Attributes

[image: ../_images/field_attributes.png]

Field attributes are the most convenient way to customize
an application, they can be specified through the
field_attributes dictionary of an Admin class :

class VisitorReport(Entity):

 __tablename__ = 'visitor_report'

 date = Column(sqlalchemy.types.Date,
 nullable = False,
 default = datetime.date.today)
 visitors = Column(sqlalchemy.types.Integer,
 nullable = False,
 default = 0)
 movie = ManyToOne('Movie', required = True)
end visitor report definition

 class Admin(EntityAdmin):
 verbose_name = _('Visitor Report')
 list_display = ['movie', 'date', 'visitors']
 field_attributes = {'visitors':{'minimum':0}}

Each combination of a delegate and an editor used to handle
a field supports a different set of field attributes. To know
which field attribute is supported by which editor or delegate,
have a look at the Delegates documentation.

Static Field Attributes

Static field attributes should be the same for every row in
the same column, as such they should be specified as constant
in the field attributes dictionary.

Dynamic Field Attributes

Some field attributes, like background_color, can be dynamic.
This means they can be specified as a function in the field
attributes dictionary.

This function should take as its single argument the object on
which the field attribute applies, as can be seen in the
background color example

These are the field attributes that can be dynamic:

Overview of the field attributes

address_validator

A function that verifies if a virtual address is valid, and eventually
corrects it. The default implementation can is
camelot.view.controls.editors.virtualaddresseditor.default_address_validator()

This function will be called while the user is editing the address, therefor it
should take very little time to do the validation. If the address is invalid,
this will be shown to the user, but it will not block the input of the address.

calculator

True or False Indicates whether a calculator should be available when editing this field.

create_inline

used in a one to many relation, if False, then a new entity will be
created within a new window, if True, it will be created as a new line
in the table.

column_width

An integer forcing the column width of a field in a table view. The use of this
field attribute is not recommended, since in most cases Camelot will figure out
how wide a column should be. The use of minimal_column_width is advised
to make sure a column has a certain width. But the column_width field attribute
can be used to shrink the column width to arbitrary sizes, even if this might
make the header unreadeable.

 field_attributes = { 'first_name':{'column_width':8},
 'suffix':{'column_width':8},}

[image: _static/controls/column_width.png]

directory

True or False indicates if the file editor should point to a
directory instead of a file. By default it points to a file.

editable

True or False

Indicates whether the user can edit the field.

field_name

This is the object name of the QtGui.QWidget that will be used
as an editor for this field.

file_filter

When the user is able to select a file or filename, use this filter to limit the available files.

length

The maximum number of characters that can be entered in a text field.

minimum

The minimum allowed value for Integer and
Float delegates or their related delegates like the Star delegate.

maximum

The maximum allowed value for Integer and
Float delegates or their related delegates like the Star delegate.

precision

The numerical precision that will be used to display Float values,
this is unrelated to the precision in which they are stored.

choices

A function taking as a single argument the object to which the field
belongs. The function returns a list of tuples containing for each
possible choice the value to be stored on the model and the value
displayed to the user.

The use of choices forces the use of the ComboBox delegate:

field_attributes = {'state':{'choices':lambda o:[(1, 'Active'),
 (2, 'Passive')]}}

minimal_column_width

An integer specifying the minimal column width when this field is
displayed in a table view. The width is expressed as the number of
characters that should fit in the column:

field_attributes = {'name':{'minimal_column_width':50}}

will make the column wide enough to display at least 50 characters.
The user will still be able to reduce the column size manually.

prefix

String to display before a number

remove_original

True or False

Set to True when a file should be deleted after it has been transfered
to the storage.

single_step

The size of a single step when the up and down arrows are used in
on a float or an integer field.

suffix

String to display after a number

tooltip

A function taking as a single argument the object to which the field
belongs. The function should return a string that will be used as a
tooltip. The string may contain html markup.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates

def dynamic_tooltip_x(coordinate):
 return u'The x value of the coordinate, now set to %s'%(coordinate.x)

def dynamic_tooltip_y(coordinate):
 return u'The y value of the coordinate, now set to %s'%(coordinate.y)

class Coordinate(object):

 def __init__(self):
 self.id = 1
 self.x = 0.0
 self.y = 0.0

 class Admin(ObjectAdmin):
 form_display = ['x', 'y',]
 field_attributes = dict(x=dict(delegate=delegates.FloatDelegate,
 tooltip=dynamic_tooltip_x),
 y=dict(delegate=delegates.FloatDelegate,
 tooltip=dynamic_tooltip_y),
)
 form_size = (100,100)

[image: doc/../_static/snippets/fields_with_tooltips.png]

translate_content

True or False

Wether the content of a field should be translated before displaying it. This
only works for displaying content, not while editing it.

background_color

A function taking as a single argument the object to which the field
belongs. The function should return None if the default background should
be used, or a QColor to be used as the background.

"""This Admin class turns the background of a Person's first
name pink if its first name doesn't start with a capital"""

from PyQt4.QtGui import QColor

from camelot.model.party import Person

def first_name_background_color(person):
 import string
 if person.first_name:
 if person.first_name[0] not in string.uppercase:
 return QColor('pink')

class Admin(Person.Admin):
 field_attributes = {'first_name':{'background_color':first_name_background_color}}

[image: doc/../_static/snippets/background_color.png]

name

The name of the field used, this defaults to the name of the attribute

target

In case of relation fields, specifies the class that is at the other
end of the relation. Defaults to the one found by introspection. This
can be used to let a many2one editor always point to a subclass of the
one found by introspection.

admin

In case of relation fields, specifies the admin class that is to be used
to visualize the other end of the relation. Defaults to the default admin
class of the target class. This can be used to make the table view
within a one2many widget look different from the default table view for
the same object.

address_type

Should be None or one of the Virtual Address Types, like ‘phone’ or
‘email’. When specified, it indicates that a VirtualAddressEditor should
only accept addresses of the specified type.

Customizing multiple field attributes

When multiple field attributes need to be customized, specifying the
field_attributes dictionary can become inefficient.

Several methods of the camelot.admin.object_admin.ObjectAdmin class can be overwritten to take care of this.

Instead of filling the field_attributes dictionary manually, the :method:`camelot.admin.object_admin.ObjectAdmin.get_field_attributes` method can be overwritten :

When multiple dynamic field attributes need to execute the same logic to determine their value,
it can be more efficient to overwrite the method :method:`camelot.admin.object_admin.ObjectAdmin.get_dynamic_field_attributes` and
execute the logic once there and set the value for all dynamic field attributes at once.

The complement of get_dynamic_field_attributes is :method:`camelot.admin.object_admin.ObjectAdmin.get_static_field_attributes`.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

 	Admin classes

Validators

Before an object is written to the database it needs to be validated, and
the user needs to be informed in case the object is not valid.

By default Camelot does some introspection on the model to check the validity
of an object, to make sure it will be able to write the object to the
database.

But this might not be enough. If more validation is needed, a custom Validator
class can be defined.
The default camelot.admin.validator.entity_validator.EntityValidator can be subclassed to create a custom validator.
The new class should then be bound to the Admin class :

from camelot.admin.validator.entity_validator import EntityValidator
from camelot.admin.entity_admin import EntityAdmin

class PersonValidator(EntityValidator):

 def objectValidity(self, entity_instance):
 messages = super(PersonValidator,self).objectValidity(entity_instance)
 if (not entity_instance.first_name) or (len(entity_instance.first_name) < 3):
 messages.append("A person's first name should be at least 2 characters long")
 return messages

class Admin(EntityAdmin):
 verbose_name = 'Person'
 list_display = ['first_name', 'last_name']
 validator = PersonValidator

Its most important method is objectValidity, which takes an object as argument and
should return a list of strings explaining why the object is invalid. These
strings will then be presented to the user.

Notice that this method will always get called outside of the GUI thread, so the call will never block the GUI.

When the user tries to leave a form in an invalid state, a platform dependent dialog box will appear.

[image: doc/../_static/snippets/entity_validator.png]

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Customizing the Application

The ApplicationAdmin controls how the application behaves, it determines
the sections in the left pane, the availability of help, the about box,
the menu structure, etc.

The Application Admin

Each Camelot application should subclass
camelot.admin.application_admin.ApplicationAdmin and overwrite some of
its methods.

The look of the main window

Most of these methods are based on the concept of Actions.

	camelot.admin.application_admin.ApplicationAdmin.get_sections()

	camelot.admin.application_admin.ApplicationAdmin.get_actions()

	camelot.admin.application_admin.ApplicationAdmin.get_toolbar_actions()

	camelot.admin.application_admin.ApplicationAdmin.get_main_menu()

Interaction with the Operating System

	camelot.admin.application_admin.ApplicationAdmin.get_organization_name()

	camelot.admin.application_admin.ApplicationAdmin.get_organization_domain()

	camelot.admin.application_admin.ApplicationAdmin.get_name()

	camelot.admin.application_admin.ApplicationAdmin.get_version()

The look of the application

	camelot.admin.application_admin.ApplicationAdmin.get_splashscreen()

	camelot.admin.application_admin.ApplicationAdmin.get_stylesheet()

	camelot.admin.application_admin.ApplicationAdmin.get_translator()

	camelot.admin.application_admin.ApplicationAdmin.get_icon()

The content of the help menu

	camelot.admin.application_admin.ApplicationAdmin.get_about()

	camelot.admin.application_admin.ApplicationAdmin.get_help_url()

Default behavior of the application

	camelot.admin.application_admin.ApplicationAdmin.get_related_admin()

The look of the form views

	camelot.admin.application_admin.ApplicationAdmin.get_related_toolbar_actions()

	camelot.admin.application_admin.ApplicationAdmin.get_form_actions()

	camelot.admin.application_admin.ApplicationAdmin.get_form_toolbar_actions()

Example

class MyApplicationAdmin(ApplicationAdmin):

 name = 'Camelot Video Store'

begin sections
 def get_sections(self):

 from camelot.model.batch_job import BatchJob
 from camelot.model.memento import Memento
 from camelot.model.party import (Person, Organization,
 PartyCategory)
 from camelot.model.i18n import Translation
 from camelot.model.batch_job import BatchJob, BatchJobType

 from camelot_example.model import Movie, Tag, VisitorReport
 from camelot_example.view import VisitorsPerDirector
begin import action
 from camelot_example.importer import ImportCovers
end import action

 return [
begin section with action
 Section(_('Movies'),
 self,
 Icon('tango/22x22/mimetypes/x-office-presentation.png'),
 items = [Movie,
 Tag,
 VisitorReport,
VisitorsPerDirector,
 ImportCovers()]),
end section with action
 Section(_('Relation'),
 self,
 Icon('tango/22x22/apps/system-users.png'),
 items = [Person,
 Organization,
 PartyCategory]),
 Section(_('Configuration'),
 self,
 Icon('tango/22x22/categories/preferences-system.png'),
 items = [Memento,
 Translation,
 BatchJobType,
 BatchJob
])
]
end sections

begin actions
 def get_actions(self):
 from camelot.admin.action import OpenNewView
 from camelot_example.model import Movie

 new_movie_action = OpenNewView(self.get_related_admin(Movie))
 new_movie_action.icon = Icon('tango/22x22/mimetypes/x-office-presentation.png')

 return [new_movie_action]
end actions

Example of a reduced application

By reimplementing the default get_sections(), get_main_menu() and
get_toolbar_actions(), it is possible to create a completely differently
looking Camelot application.

[image: _static/controls/reduced_main_window.png]
 def get_toolbar_actions(self, toolbar_area):
 from PyQt4.QtCore import Qt
 from camelot.model.party import Person
 from camelot.admin.action import application_action, list_action
 from model import Movie

 movies_action = application_action.OpenTableView(self.get_related_admin(Movie))
 movies_action.icon = Icon('tango/22x22/mimetypes/x-office-presentation.png')
 persons_action = application_action.OpenTableView(self.get_related_admin(Person))
 persons_action.icon = Icon('tango/22x22/apps/system-users.png')

 if toolbar_area == Qt.LeftToolBarArea:
 return [movies_action,
 persons_action,
 list_action.OpenNewView(),
 list_action.OpenFormView(),
 list_action.DeleteSelection(),
 application_action.Exit(),]

 def get_actions(self):
 return []

 def get_sections(self):
 return None

 def get_main_menu(self):
 return None

 def get_stylesheet(self):
 from camelot.view import art
 return art.read('stylesheet/black.qss')

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Creating Forms

This section describes how to place fields on forms and applying
various layouts. It also covers how to customize forms to your
specific needs. As with everything in Camelot, the goal of the framework
is that you can create 80% of your forms with minimal effort, while
the framework should allow you to really customize the other 20% of
your forms.

Form

A form is a collection of fields organized within a layout. Each
field is represented by its editor.

Usually forms are defined by specifying the form_display attribute of an
Admin class :

from sqlalchemy.schema import Column
from sqlalchemy.types import Unicode, Date
from camelot.admin.entity_admin import EntityAdmin
from camelot.core.orm import Entity
from camelot.view import forms

class Movie(Entity):
 title = Column(Unicode(60), nullable=False)
 short_description = Column(Unicode(512))
 releasedate = Column(Date)

 class Admin(EntityAdmin):
 form_display = forms.Form(['title', 'short_description', 'releasedate'])

[image: doc/../_static/form/form.png]
The form_display attribute should either be a list of fields to display
or an instance of camelot.view.forms.Form or its subclasses.

Forms can be nested into each other :

from camelot.admin.entity_admin import EntityAdmin
from camelot.view import forms
from camelot.core.utils import ugettext_lazy as _

class Admin(EntityAdmin):
 verbose_name = _('person')
 verbose_name_plural = _('persons')
 list_display = ['first_name', 'last_name',]
 form_display = forms.TabForm([('Basic', forms.Form(['first_name', 'last_name', 'contact_mechanisms',])),
 ('Official', forms.Form(['birthdate', 'social_security_number', 'passport_number',
 'passport_expiry_date','addresses',])),])

[image: doc/../_static/form/nested_form.png]

Inheritance and Forms

Just as Entities support inheritance, forms support inheritance as well. This
avoids duplication of effort when designing and maintaining forms. Each of the
Form subclasses has a set of methods to modify its content. In the example below
a new tab is added to the form defined in the previous section.

from copy import deepcopy

from camelot.view import forms
from nested_form import Admin

class InheritedAdmin(Admin):
 form_display = deepcopy(Admin.form_display)
 form_display.add_tab('Work', forms.Form(['employers', 'directed_organizations', 'shares']))

[image: doc/../_static/form/inherited_form.png]

Putting notes on forms

[image: doc/../_static/editors/NoteEditor.png]
A note on a form is nothing more than a property with the NoteDelegate as its
delegate and where the widget is inside a WidgetOnlyForm.

In the case of a Person, we display a note if another person with the same name
already exists :

 def note(self):
 for person in self.__class__.query.filter_by(first_name=self.first_name, last_name=self.last_name):
 if person != self:
 return _('A person with the same name already exists')

Available Form Subclasses

The camelot.view.forms.Form class has several subclasses that can be used to create
various layouts. Those can be found in the camelot.view.forms module.
Each subclass maps to a Qt Layout class.

Customizing Forms

Several options exist for completely customizing the forms of an application.

Layout

When the desired layout cannot be achieved with Camelot’s form classes, a custom camelot.view.forms.Form subclass can be made to layout the widgets.

When subclassing the Form class, it’s render method should be reimplemented to put the labels and the editors in a custom layout. The render method will be
called by Camelot each time it needs the form. It should thus return a QtGui.QWidget to be used as the needed form.

The render method its first argument is the factory class camelot.view.controls.formview.FormEditors, through which editors and labels can be
constructed. The editor widgets are bound to the data model.

from PyQt4 import QtGui

from camelot.view import forms
from camelot.admin.entity_admin import EntityAdmin

class CustomForm(forms.Form):

 def __init__(self):
 super(CustomForm, self).__init__(['first_name', 'last_name'])

 def render(self, editor_factory, parent = None, nomargins = False):
 widget = QtGui.QWidget(parent)
 layout = QtGui.QFormLayout()
 layout.addRow(QtGui.QLabel('Please fill in the complete name :', widget))
 for field_name in self.get_fields():
 field_editor = editor_factory.create_editor(field_name, widget)
 field_label = editor_factory.create_label(field_name, field_editor, widget)
 layout.addRow(field_label, field_editor)
 widget.setLayout(layout)
 widget.setBackgroundRole(QtGui.QPalette.ToolTipBase)
 widget.setAutoFillBackground(True)
 return widget

class Admin(EntityAdmin):
 list_display = ['first_name', 'last_name']
 form_display = CustomForm()
 form_size = (300,100)

The form defined above puts the widgets into a QtGui.QFormLayout using a different background color, and adds some instructions for the user :

[image: doc/../_static/form/custom_layout.png]

Editors

The editor of a specific field can be changed, by specifying an alternative QtGui.QItemDelegate for that field, using the delegate field attributes,
see Specifying delegates.

Tooltips

Each field on the form can be given a dynamic tooltip, using the tooltip field attribute, see tooltip.

Buttons

Buttons bound to a specific action can be put on a form, using the form_actions attribute, attribute of the Admin class : Form Actions.

Validation

Validation is done at the object level. Before a form is closed validation of the bound object takes place, an invalid object will prevent closing the form.
A custom validator can be defined : Validators

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Actions

Introduction

Besides displaying and editing data, every application needs the
functions to manipulate data or create reports. In Camelot this is done through
actions. Actions can appear as buttons on the side of a form or a table, as
icons in a toolbar or as icons in the home workspace.

[image: _static/entityviews/new_view_address.png]
Every Action is build up with a set of Action Steps. An Action Step is a
reusable part of an Action, such as for example, ask the user to select a
file. Camelot comes with a set of standard Actions and Action Steps that are
easily extended to manipulate data or create reports.

When defining Actions, a clear distinction should be made between things
happening in the model thread (the manipulation or querying of data), and things
happening in the gui thread (pop up windows or reports). The The Two Threads
section gives more detail on this.

Summary

In general, actions are defined by subclassing the standard Camelot
camelot.admin.action.Action class

from camelot.admin.action import Action
from camelot.view.action_steps import PrintHtml
from camelot.core.utils import ugettext_lazy as _
from camelot.view.art import Icon

class PrintReport(Action):

 verbose_name = _('Print Report')
 icon = Icon('tango/16x16/actions/document-print.png')
 tooltip = _('Print a report with all the movies')

 def model_run(self, model_context):
 yield PrintHtml('Hello World')

Each action has two methods, gui_run() and model_run(), one of
them should be reimplemented in the subclass to either run the action in the
gui thread or to run the action in the model thread. The default
Action.gui_run() behavior is to pop-up a ProgressDialog dialog
and start the model_run() method in the model thread.

model_run() in itself is a generator, that can yield ActionStep
objects back to the gui, such as a PrintHtml.

The action objects can than be used a an element of the actions list returned by
the ApplicationAdmin.get_actions() method:

 def get_actions(self):
 from camelot.admin.action import OpenNewView
 from camelot_example.model import Movie

 new_movie_action = OpenNewView(self.get_related_admin(Movie))
 new_movie_action.icon = Icon('tango/22x22/mimetypes/x-office-presentation.png')

 return [new_movie_action]

or be used in the ObjectAdmin.list_actions or
ObjectAdmin.form_actions attributes.

The Add an import wizard to an application tutorial has a complete example of creating and
using and action.

What can happen inside model_run()

yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] events to the GUI

Actions need to be able to send their results back to the user, or ask
the user for additional information. This is done with the yield [http://docs.python.org/dev/reference/simple_stmts.html#yield]
statement.

Through yield [http://docs.python.org/dev/reference/simple_stmts.html#yield], an Action Step is send to the GUI thread, where it creates
user interaction, and sends it result back to the ‘model_thread’. The model_thread
will be blocked while the action in the GUI thread takes place, eg

yield PrintHtml('Hello World')

Will pop up a print preview dialog in the GUI, and the model_run method will
only continue when this dialog is closed.

Events that can be yielded to the GUI should be of type
camelot.admin.action.base.ActionStep. Action steps are reusable parts of
an action. Possible Action Steps that can be yielded to the GUI include:

	camelot.view.action_steps.change_object.ChangeObject

	camelot.view.action_steps.change_object.ChangeObjects

	camelot.view.action_steps.print_preview.PrintChart

	camelot.view.action_steps.print_preview.PrintPreview

	camelot.view.action_steps.print_preview.PrintHtml

	camelot.view.action_steps.print_preview.PrintJinjaTemplate

	camelot.view.action_steps.open_file.OpenFile

	camelot.view.action_steps.open_file.OpenStream

	camelot.view.action_steps.open_file.OpenJinjaTemplate

	camelot.view.action_steps.gui.CloseView

	camelot.view.action_steps.gui.MessageBox

	camelot.view.action_steps.gui.Refresh

	camelot.view.action_steps.gui.OpenFormView

	camelot.view.action_steps.gui.ShowPixmap

	camelot.view.action_steps.gui.ShowChart

	camelot.view.action_steps.select_file.SelectFile

	camelot.view.action_steps.select_object.SelectObject

keep the user informed about progress

An camelot.view.action_steps.update_progress.UpdateProgress object can be
yielded, to update the state of the progress dialog:

This should be done regulary to keep the user informed about the
progres of the action:

movie_count = Movie.query.count()

report = '<table>'
for i, movie in enumerate(Movie.query.all()):
 report += '<tr><td>%s</td></tr>'%(movie.name)
 yield UpdateProgress(i, movie_count)
report += '</table>'

yield PrintHtml(report)

Should the user have pressed the Cancel button in the progress
dialog, the next yield of an UpdateProgress object will raise a
camelot.core.exception.CancelRequest.

manipulation of the model

The most important purpose of an action is to query or manipulate the model,
all such things can be done in the model_run() method, such as executing
queries, manipulating files, etc.

Whenever a part of the model has been changed, it might be needed to inform
the GUI about this, so that it can update itself, the easy way of doing so
is by yielding an instance of camelot.view.action_steps.orm.FlushSession
such as:

movie.rating = 5
yield FlushSession(model_context.session)

This will flush the session to the database, and at the same time update
the GUI so that the flushed changes are shown to the user by updating the
visualisation of the changed movie on every screen in the application that
displays this object. Alternative updates that can be generated are :

	camelot.view.action_steps.orm.UpdateObject, if one wants to inform
the GUI an object has been updated.

	camelot.view.action_steps.orm.DeleteObject, if one wants to inform
the GUI an object is going to be deleted.

	camelot.view.action_steps.orm.CreateObject, if one wants to inform
the GUI an object has been created.

raise exceptions

When an action fails, a normal Python Exception can be raised, which
will pop-up an exception dialog to the user that displays a stack trace of the
exception. In case no stack trace should be shown to the user, a
camelot.core.exception.UserException should be raised. This will popup
a friendly dialog :

[image: _static/controls/user_exception.png]
When the model_run() method raises a camelot.core.exception.CancelRequest,
a GeneratorExit or a StopIteration exception, these are
ignored and nothing will be shown to the user.

handle exceptions

In case an unexpected event occurs in the GUI, a yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] statement
will raise a camelot.core.exception.GuiException. This exception
will propagate through the action an will be ignored unless handled by the
developer.

request information from the user

The pop-up of a dialog that presents the user with a number of options can be
triggered from within the model_run() method. This
happens by transferring an options object back and forth between the
model_thread and the gui_thread. To transfer such an object, this object
first needs to be defined:

class Options(object):

 def __init__(self):
 self.earliest_releasedate = datetime.date(2000, 1, 1)
 self.latest_releasedate = datetime.date.today()

 class Admin(ObjectAdmin):
 form_display = ['earliest_releasedate', 'latest_releasedate']
 field_attributes = { 'earliest_releasedate':{'delegate':delegates.DateDelegate},
 'latest_releasedate':{'delegate':delegates.DateDelegate}, }

Than a camelot.view.action_steps.change_object.ChangeObject action step can be
yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] to present the options to the user and get the filled in values back :

 from PyQt4 import QtGui
 from camelot.view import action_steps
 options = NewProjectOptions()
 yield action_steps.UpdateProgress(text = 'Request information')
 yield action_steps.ChangeObject(options)

Will show a dialog to modify the object:

[image: _static/actionsteps/change_object.png]
When the user presses Cancel button of the dialog, the
yield [http://docs.python.org/dev/reference/simple_stmts.html#yield] statement will raise a
camelot.core.exception.CancelRequest.

Other ways of requesting information are :

	camelot.view.action_steps.select_file.SelectFile, to request
to select an existing file to process or a new file to save information.

Issue SQLAlchemy statements

Camelot itself only manipulates the database through objects of the
ORM for the sake of make no difference between objects mapped to the database
and plain old python objects. But for performance reasons, it is often desired
to do manipulations directly through SQLAlchemy ORM or Core queries :

 model_context.session.query(BatchJobType).update(values = {'name':'accounting audit'},
 synchronize_session = 'evaluate')

States and Modes

States

The widget that is used to trigger an action can be in different states. A
camelot.admin.action.base.State object is returned by the
camelot.admin.action.base.Action.get_state method. Subclasses of
Action can reimplement this method to change the State of an action button.

This allows to hide or disable the action button, depending on the objects
selected or the current object being displayed.

Modes

An action widget can be triggered in different modes, for example a print button
can be triggered as Print or Export to PDF. The different modes of
an action are specified as a list of camelot.admin.action.base.Mode objects.

To change the modes of an Action, either specify the modes attribute of
an Action or specify the modes attribute of the State
returned by the Action.get_state() method.

Action Context

Depending on where an action was triggered, a different context will be
available during its execution in camelot.admin.action.base.Action.gui_run()
and camelot.admin.action.base.Action.model_run().

The minimal context available in the GUI thread when gui_run() is
called :

While the minimal contact available in the Model thread when model_run()
is called :

Application Actions

To enable Application Actions for a certain ApplicationAdmin overwrite
its ApplicationAdmin.get_actions() method:

from camelot.admin.application_admin import ApplicationAdmin
from camelot.admin.action import Action

class GenerateReports(Action):

 verbose_name = _('Generate Reports')

 def model_run(self, model_context):
 for i in range(10):
 yield UpdateProgress(i, 10)

class MyApplicationAdmin(ApplicationAdmin)

 def get_actions(self):
 return [GenerateReports(),]

An action specified here will receive an ApplicationActionGuiContext
object as the gui_context argument of the the gui_run()
method, and a ApplicationActionModelContext object as the
model_context argument of the model_run() method.

Form Actions

A form action has access to the object currently visible on the form.

class BurnToDisk(Action):

 verbose_name = _('Burn to disk')

 def model_run(self, model_context):
 yield action_steps.UpdateProgress(0, 3, _('Formatting disk'))
 time.sleep(0.7)
 yield action_steps.UpdateProgress(1, 3, _('Burning movie'))
 time.sleep(0.7)
 yield action_steps.UpdateProgress(2, 3, _('Finishing'))
 time.sleep(0.5)

To enable Form Actions for a certain ObjectAdmin or EntityAdmin,
specify the form_actions attribute.

 #
 # create a list of actions available for the user on the form view
 #
 form_actions = [BurnToDisk()]

[image: _static/entityviews/new_view_movie.png]
An action specified here will receive a FormActionGuiContext object as the
gui_context argument of the gui_run() method, and a
FormActionModelContext object as the model_context argument of the
model_run() method.

List Actions

A list action has access to both all the rows displayed in the table
(called the collection) and the rows selected by the user (called the
selection) :

class ChangeRatingAction(Action):
 """Action to print a list of movies"""

 verbose_name = _('Change Rating')

 def model_run(self, model_context):
 #
 # the model_run generator method yields various ActionSteps
 #
 options = Options()
 yield ChangeObject(options)
 if options.only_selected:
 iterator = model_context.get_selection()
 else:
 iterator = model_context.get_collection()
 for movie in iterator:
 yield UpdateProgress(text = u'Change %s'%unicode(movie))
 movie.rating = min(5, max(0, (movie.rating or 0) + options.change))
 #
 # FlushSession will write the changes to the database and inform
 # the GUI
 #
 yield FlushSession(model_context.session)

To enable List Actions for a certain ObjectAdmin or
EntityAdmin, specify the list_actions attribute:

 #
 # the action buttons that should be available in the list view
 #
 list_actions = [ChangeRatingAction()]

This will result in a button being displayed on the table view.

[image: _static/entityviews/table_view_movie.png]
An action specified here will receive a ListActionGuiContext object as
the gui_context argument of th the gui_run() method, and a
ListActionModelContext object as the model_context argument of the
model_run() method.

Reusing List and Form actions

There is no need to define a different action subclass for form and list
actions, as both their model_context have a get_selection method, a single
action can be used both for the list and the form.

Available actions

Camelot has a set of available actions that combine the various
ActionStep subclasses. Those actions can be used directly or as an
inspiration to build new actions:

	camelot.admin.action.application_action.OpenNewView

	camelot.admin.action.application_action.OpenTableView

	camelot.admin.action.application_action.ShowHelp

	camelot.admin.action.application_action.ShowAbout

	camelot.admin.action.application_action.Backup

	camelot.admin.action.application_action.Restore

	camelot.admin.action.application_action.Refresh

	camelot.admin.action.form_action.CloseForm

	camelot.admin.action.list_action.CallMethod

	camelot.admin.action.list_action.OpenFormView

	camelot.admin.action.list_action.OpenNewView

	camelot.admin.action.list_action.ToPreviousRow

	camelot.admin.action.list_action.ToNextRow

	camelot.admin.action.list_action.ToFirstRow

	camelot.admin.action.list_action.ToLastRow

	camelot.admin.action.list_action.ExportSpreadsheet

	camelot.admin.action.list_action.PrintPreview

	camelot.admin.action.list_action.SelectAll

	camelot.admin.action.list_action.ImportFromFile

	camelot.admin.action.list_action.ReplaceFieldContents

Inspiration

	Implementing actions as generators was made possible with the language functions
of PEP 342 [http://www.python.org/dev/peps/pep-0342].

	The EuroPython talk of Erik Groeneveld inspired the use of these
features. (http://ep2011.europython.eu/conference/talks/beyond-python-enhanched-generators)

	Action steps were introduced to be able to take advantage of the new language
features of PEP 380 [http://www.python.org/dev/peps/pep-0380] in Python 3.3

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Documents and Reports

Generate documents

Generating reports and documents is an important part of any application.
Python and Qt provide various ways to generate documents. Each of them
with its own advantages and disadvantages.

	Method
	Advantages
	Disadvantages

	PDF documents through
reportlab
	
	Perfect control over
layout

	Excellent for mass
creation of documents

	
	Relatively steep
learning curve

	User cannot edit
document

	HTML
	
	Easy to get started

	Print preview within
Camelot

	No dependencies

	
	Not much layout control

	User cannot edit
document

	Docx Word documents
	
	User can edit
document

	
	Proprietary format

	Word processor needed

Camelot leaves all options open to the developer.

Please have a look at Creating a Report with Camelot to get started with generating
documents.

Generating a document or report is nothing more than yielding the appropriate
action step during the model_run() method of an Action.

Action steps usable for reporting are :

	camelot.view.action_steps.print_preview.PrintPreview

	camelot.view.action_steps.print_preview.PrintHtml

	camelot.view.action_steps.print_preview.PrintJinjaTemplate

	camelot.view.action_steps.open_file.OpenFile

	camelot.view.action_steps.open_file.OpenStream

	camelot.view.action_steps.open_file.OpenJinjaTemplate

HTML based documents

 class MovieSummary(Action):

 verbose_name = _('Summary')

 def model_run(self, model_context):
 from camelot.view.action_steps import PrintHtml
 movie = model_context.get_object()
 yield PrintHtml("<h1>This will become the movie report of %s!</h1>" % movie.title)

The supported html subset is documented here :

http://doc.qt.nokia.com/stable/richtext-html-subset.html

Alternative rendering

Instead of QtGui.QTextDocument another html renderer such as
QtWebKit.QWebView can be used in combination with the
camelot.view.action_steps.print_preview.PrintPreview action step. The
QWebView class has complete support for html and css.

 class WebkitPrint(Action):

 def model_run(self, model_context):
 from PyQt4.QtWebKit import QWebView
 from camelot.view.action_steps import PrintPreview

 movie = model_context.get_object()

 document = QWebView()
 document.setHtml('<h2>%s</h2>' % movie.title)

 yield PrintPreview(document)

Docx based documents

Create a template document with MS Office

Create a document using MS Office and with some placeholder text
on places where you want to insert data.

[image: ../_images/template_document_word.png]
And save it as an xml file :

[image: ../_images/template_document_word_save_as.png]

Clean the XML generated by MS Office

The XML file generated by MS Office can be cleaned using xmllint:

xmllint --format template.xml > template_clean.xml

Replace the placeholders

The template will be merged with the objects in the selection using jinja,
where the object in the selection will be available as a variable named
obj and the time of merging the document is available as now:

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Delegates

Delegates are a cornerstone of the Qt model/delegate/view framework.
A delegate is used to display and edit data from a model.

In the Camelot framework, every field of an Entity has an associated delegate
that specifies how the field will be displayed and edited. When a new form or
table is constructed, the delegates of all fields on the form or table will
construct editors for their fields and fill them with data from the model.
When the data has been edited in the form, the delegates will take care of
updating the model with the new data.

All Camelot delegates are subclasses of QtGui.QAbstractItemDelegate.

The Qt website [http://www.qt-project.org] provides detailed information the differenct classes involved in the model/delegate/view framework.

Specifying delegates

The use of a specific delegate can be forced by using the delegate field
attribute. Suppose rating is a field of type integer, then it can
be forced to be visualized as stars:

from camelot.view.controls import delegates

class Movie(Entity):
 title = Column(Unicode(50))
 rating = Column(Integer)

 class Admin(EntityAdmin):
 list_display = ['title', 'rating']
 field_attributes = {'rating':{'delegate':delegates.StarDelegate}}

The above code will result in:

[image: doc/../_static/editors/StarEditor_editable.png]
If no delegate field attribute is given, a default one will be taken
depending on the sqlalchemy field type.

All available delegates can be found in camelot.view.controls.delegates

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Charts

To enable charts, Camelot is closely integrate with Matplotlib [http://www.matplotlib.org],
one of the very high quality Python charting packages.

Often creating a chart involves gathering a lot of data, this needs to happen inside the model, to
free the GUI from such tasks. Once the data is gathered, it is put into a container, this container
is then shipped to the gui thread, where the chart is put on the screen.

[image: doc/../_static/editors/ChartEditor_editable.png]

A simple plot

As shown in the example below, creating a simple plot involves two things :

	Create a property that returns one of the chart containers, in this case
the PlotContainer is used.

	Specify the delegate to be used to visualize the property, this should be
the ChartDelegate

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates
from camelot.container.chartcontainer import PlotContainer

class Wave(object):

 def __init__(self):
 self.amplitude = 1
 self.phase = 0

 @property
 def chart(self):
 import math
 x_data = [x/100.0 for x in range(1, 700, 1)]
 y_data = [self.amplitude * math.sin(x - self.phase) for x in x_data]
 return PlotContainer(x_data, y_data)

 class Admin(ObjectAdmin):
 form_display = ['amplitude', 'phase', 'chart']
 field_attributes = dict(amplitude = dict(delegate=delegates.FloatDelegate,
 editable=True),
 phase = dict(delegate=delegates.FloatDelegate,
 editable=True),
 chart = dict(delegate=delegates.ChartDelegate))

The PlotContainer object takes as its arguments, the same arguments that can be passed to the
matplotlib plot command. The container stores all those arguments, and later passes them to the
plot command executed within the gui thread.

[image: doc/../_static/snippets/simple_plot.png]
The simpel chart containers map to their respective matplotlib command. They include :

Actions

The PlotContainer and BarContainer can be used to print or display charts
as part of an action through the use of the appropriate action steps :

	camelot.view.action_steps.print_preview.PrintChart

	camelot.view.action_steps.gui.ShowChart

 class ChartPrint(Action):

 def model_run(self, model_context):
 from camelot.container.chartcontainer import BarContainer
 from camelot.view.action_steps import PrintChart
 chart = BarContainer([1, 2, 3, 4],
 [5, 1, 7, 2])
 print_chart_step = PrintChart(chart)
 print_chart_step.page_orientation = QtGui.QPrinter.Landscape
 yield print_chart_step

Advanced Plots

For more advanced plots, the camelot.container.chartcontainer.AxesContainer class can be used.
The AxesContainer class can be used as if it were a matplotlib Axes object.
But when a method on the AxesContainer is called it will record the method call instead of creating a plot.
These method calls will then be replayed by the gui to create the actual plot.

from camelot.admin.object_admin import ObjectAdmin
from camelot.view.controls import delegates
from camelot.container.chartcontainer import AxesContainer

class Wave(object):

 def __init__(self):
 self.amplitude = 1
 self.phase = 2.89

 @property
 def chart(self):
 import math
 axes = AxesContainer()
 x_data = [x/100.0 for x in range(1, 700, 1)]
 y_data = [self.amplitude * math.sin(x - self.phase) for x in x_data]
 axes.plot(x_data, y_data)
 axes.grid(True)
 axes.axvspan(self.phase-0.05, self.phase+0.05, facecolor='b', alpha=0.5)
 return axes

 class Admin(ObjectAdmin):
 form_display = ['amplitude', 'phase', 'chart']
 field_attributes = dict(amplitude = dict(delegate=delegates.FloatDelegate,
 editable=True),
 phase = dict(delegate=delegates.FloatDelegate,
 editable=True),
 chart = dict(delegate=delegates.ChartDelegate))

[image: doc/../_static/snippets/advanced_plot.png]

More

For more information on the various types of plots that can be created, have a look at the Matplotlib Gallery [http://matplotlib.sourceforge.net/gallery.html].

When the AxesContainer does not provide enough flexibility, for example when the plot needs to
manipulated through its object structure, more customization is possible by subclassing either
the camelot.container.chartcontainer.AxesContainer or the camelot.container.chartcontainer.FigureContainer :

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Document Management

Camelot provides some features for the management of documents. Notice that
documents managed by Camelot are stored in a specific location (either an
application directory on the local disk, a network share or a remote server).

This in contrast with some application that just store the link to a file in
the database, and don’t store the file itself.

Three concepts are important for understanding how Camelot handles documents :

	The Storage : this is the place where Camelot stores its documents,
by default this is a directory on the local system. When a file is
checked in into a storage, a StoredFile is returned. Files are checked
out from the storage by their StoredFile representation.

	The StoredFile : a stored file is a representation of a file stored
in a storage. It does not contain the file itself but its name and meta
information.

	The File Field type : is a custom field type to write and read the
StoredFile into the database. The actual name of the StoredFile is the
only thing stored in the database.

The File field type

Usually the first step when working with documents is to use the File field
type somewhere in the model definition. Alternatively the Image field type
can be used if one only wants to store images in that field.

The StoredFile

When the File field type is used in the code, it returns and accepts objects of
type StoredFile.

The Image field type will return objects of type StoredImage.

The Storage

This is where the actual file is stored. The default storage implementation
simply represents a directory on the file system.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Under the hood

A lot of things happen when a Camelot application starts up.
In this section we give a brief overview of those which might need to be adapted for more complex applications

Global settings

Camelot has a global settings object of which the attributes are used throughout Camelot whenever a piece
of global configuration is needed.
Examples of such global configuration are the location of the database and the location of stored files and
images.
To access the global configuration, simply import the object

from camelot.core.conf import settings
print settings.CAMELOT_MEDIA_ROOT()

To manipulate the global configuration, create a class with the needed attributes and methods and append
it to the global configuration :

The settings object should have a method named ENGINE, uses the create_engine [http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine]
SQLAlchemy function to create a connection to the database.
Camelot provides a default sqlite URI scheme. But you can set your own.

 def ENGINE(self):
 from sqlalchemy import create_engine
 return create_engine(u'sqlite:///%s/%s'%(self.data_folder,
 self.data))

Older versions of Camelot looked for a settings module on sys.path to look for the global configuration.
This approach is still supported.

Setting up the ORM

When the application starts up, the setup_model method of the Settings class is called.
In this function, all model files should be imported, to make sure the model has been completely setup.
The importing of these files is enough to define the mapping between objects and tables.

The import of these model definitions should happen before the call to create_all to make sure all models are known before the tables are created.

Setting up the Database

Engine

The Settings class should contain a method named ENGINE that returns a connection to the database.
Whenever a connection to the database is needed, this method will be called.
The camelot.core.conf.SimpleSettings has a default ENGINE method that returns an SQLite
database in a user directory.

Metadata

SQLAlchemy defines the MetaData class. A MetaData object contains all the information about a database schema, such
as Tables, Columns, Foreign keys, etc. The camelot.core.sql contains the singleton metadata object which is the
default MetaData object used by Camelot.
In the setup_model function, this metadata object is bound to the database engine.

In case an application works with multiple database schemas in parallel, this step needs to be adapted.

Creating the tables

By simply importing the modules which contain parts of the model definition, the needed table information
is added to the metadata object. At the end of the setup_model function, the create_all method is called on the metadata, which
will create the tables in the database if they don’t exist yet.

Working without the default model

Camelot comes with a default model for Persons, Organizations, History tracking, etc.

To turn these on or off, simply add or remove the import statements of those modules from the
setup_model method in the Settings class.

Transactions

Transactions in Camelot can be used just as in normal SQLAlchemy.
This means that inside a camelot.admin.action.base.Action.model_run() method a transaction can be started and committed

with model_context.session.begin()
 ...do some modifications...

More information on the transactional behavior of the session can be found in the SQLAlchemy documentation [http://docs.sqlalchemy.org/en/latest/orm/session.html#committing] ...

Using Camelot without the GUI

Often a Camelot application also has a non GUI part, like batch scripts, server side
scripts, etc.

It is of course perfectly possible to reuse the whole model definition in those non GUI parts.
The easiest way to do so is to leave the Camelot GUI application as it is and then in the non GUI script, initialize the model first

from camelot.core.conf import settings
settings.setup_model()

From that point, all model manipulations can be done. Access to the single
session can be obtained from anywhere through the Session factory method

from camelot.core.orm import Session
session = Session()

After the manipulations to the model have been done, they can be flushed to the db

session.flush()

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Built in data models

Camelot comes with a number of built in data models. To avoid boiler plate models needed in almost any application (like Persons, Addresses, etc.),
the developer is encouraged to use these data models as a start for developing custom applications.

Modules

The camelot.model module contains a number of submodules, each with a specific purpose

To activate such a submodule, the submodule should be imported in the setup_model method of settings class,
before the tables are created

def setup_model(self):
 from camelot.core.sql import metadata
 metadata.bind = self.ENGINE()
 from camelot.model import authentication
 from camelot.model import party
 from camelot.model import i18n
 from camelot.core.orm import setup_all
 setup_all(create_tables=True)

Persons and Organizations

I18N

Fixture

Authentication

Batch Jobs

A batch job object can be used as a context manager :

 from camelot.model.batch_job import BatchJob, BatchJobType
 synchronize = BatchJobType.get_or_create(u'Synchronize')
 with BatchJob.create(synchronize) as batch_job:
 batch_job.add_strings_to_message([u'Synchronize part A',
 u'Synchronize part B'])
 batch_job.add_strings_to_message([u'Done'], color = 'green')

Whenever an exception happens inside the with block, the stack trace
of this exception will be written to the bach job object and it’s status will
be set to errors. At the end of the with block, the status of the
batch job will be set to finished.

History tracking

Customization

Adding fields

Sometimes the built in models don’t have all the fields or relations required for a specific application.
Fortunately it is possible to add fields to an existing model on a per application base.

To do so, simply assign the required fields in the application specific model definition,
before the tables are created.

 party.Person.language = schema.Column(types.Unicode(30))

 metadata.create_all()
 p = party.Person(first_name = u'Peter',
 last_name = u'Principle',
 language = u'English')
 session.flush()

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Fixtures : handling static data in the database

Some tables need to be filled with default data when users start
to work with the application. The Camelot fixture module
camelot.model.fixture assist in handling this kind of data.

Suppose we have an entity PartyCategory to divide Persons and Organizations
into certain groups.

The complete definition of such an entity can be found in
camelot.model.authentication.PartyCategory.

To make things easier for the first time user, some prefab categories should
be available when the user starts the application. Such as Suspect,
Prospect, VIP.

When to update fixtures

Most of the time static data should be created or updated right after the
model has been set up and before the user starts using the application.

The easiest place to do this is in the setup_model method inside the
settings.py module.

So we rewrite settings.py to include a call to a new update_fixtures
method:

def update_fixtures():
 """Update static data in the database"""
 from camelot.model.fixture import Fixture
 from model import MovieType

def setup_model():
 from camelot.model import *
 from camelot.model.memento import *
 from camelot.model.synchronization import *
 from camelot.model.authentication import *
 from camelot.model.i18n import *
 from camelot.model.fixture import *
 from model import *
 setup_all(create_tables=True)
 updateLastLogin()
 update_fixtures()

Creating new data

When creating new data with the fixture module, a reference to the created
data will be stored in the fixture table along with a ‘fixture key’. This
fixture key can be used later to retrieve or update the created data.

So lets create some new movie types:

def update_fixtures():
 """Update static data in the database"""
 from camelot.model.fixture import Fixture
 from model import MovieType
 Fixture.insertOrUpdateFixture(MovieType,
 fixture_key = 'comic',
 values = dict(name='Comic'))
 Fixture.insertOrUpdateFixture(MovieType,
 fixture_key = 'scifi',
 values = dict(name='Science Fiction'))

Fixture keys should be unique for each Entity class.

Update fixtures

When a new version of the application gets released, we might want to change
the static data and add some icons to the movie types. Thanks to the ‘fixture key’,
it’s easy to retrieve and update the already inserted data, just modify the
update_fixtures function:

def update_fixtures():
 """Update static data in the database"""
 from camelot.model.fixture import Fixture
 from model import MovieType
 Fixture.insertOrUpdateFixture(MovieType,
 fixture_key = 'comic',
 values = dict(name='Comic', icon='spiderman.png'))
 Fixture.insertOrUpdateFixture(MovieType,
 fixture_key = 'scifi',
 values = dict(name='Science Fiction', icon='light_saber.png'))

The fixture version

In case lots of data needs to be read into the database (like a list of
postal codeds), it might make no sense to create a new fixture for each code,
instead a fixture version number can be set to indicate a list has been read
into the database. The camelot.model.fixture.FixtureVersion exists
to facilitate this.

 import csv
 if FixtureVersion.get_current_version(u'demo_data') == 0:
 reader = csv.reader(open(example_file))
 for line in reader:
 Person(first_name = line[0], last_name = line[1])
 FixtureVersion.set_current_version(u'demo_data', 1)
 session.flush()

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Managing a Camelot project

Once a project has been created and set up as described in the tutorial Creating a Movie Database Application, it needs to be maintained and managed over time.

The command line tool camelot_admin.py exist to assist in the management of Camelot projects.

camelot_admin.py

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

The Two Threads

Most users of Camelot won’t need the information in this Chapter
and can simply enjoy building applications that don’t freeze. However,
if you start customizing your application beyond developing custom
delegates, this information might be crucial to you.

Introduction

A very important aspect of any GUI application is the speed
with which it responds to the user’s request. While it is
acceptable that some actions take some time to complete, an
application freezing for even half a second makes the user
feel uncomfortable.

From an application developer’s point of view, potential
freezes are everywhere (open a file, access a database, do
some calculations), so we need a structural approach to
get rid of them.

Two different approaches are possible. The first approach
is split all possibly blocking operations into small parts and hook
everything together with events. This is the approach taken
in some of the QT classes (eg.: the network classes) or in
the Twisted framework. The second approach is to use multiple
threads of execution and make sure the blocking operations
run in another thread than the GUI.

	Events :

	
	No multi-threaded programming needed : no deadlocks etc.

	Every single library you use must support this approach

	Multiple threads :

	
	Scary : potential race conditions and deadlocks

	Can be used with existing libraries

The Camelot framework was developed using the multi-threaded
approach. This allows to build on top of a large number of
existing libraries (sqlalchemy, PIL, numpy,...) that don’t support
the event based approach.

Two Threads

To keep the problems associated with multi-threaded programming
under control, Camelot runs only two threads for its basic
operations. Those threads don’t share any data with each other
and exchange information using a message queue (the way
Erlang advocates). This ensures there are no deadlocks or
race conditions.

The first thread, called the GUI Thread contains the QT widgets
and runs the QT event loop. No blocking operations should take
place in this thread. The second thread contains all the data,
like objects mapped to the database by sqlalchemy, and is called
the Model Thread.

This approach keeps the problem of application freezes under
control, it won’t speed up your application when certain actions
take a long time, but it will ensure the gui remains responsive
during those actions.

The Model Thread

Since every single operation on a data model is potentially
blocking (eg : getting an attribute of a class mapped to the
database by sqlalchemy might trigger a query to the database
which might be overloaded at that time), the whole data model
lives in a separate thread and every operation on the data model
should take place within this thread.

To keep things simple and avoid the use of locks and data
synchronization between threads, there is only one such thread,
called the Model Thread.

Other threads that want to interact with the model can post
operations to the model thread using its queue

from camelot.view.model_thread import get_model_thread

mt = get_model_thread()
mt.post(my_operation)

where ‘my_operation’ is a function that will then be executed
within the model thread.

The GUI Thread

Now that all potentially blocking operations have been move to the
model thread, we have a GUI Thread that never blocks. But the GUI
thread will need some data from the model to present to the user.

The GUI thread gets its data by posting an operation to the Model
Thread that strips some data from the model, this data will then be
posted by the Model thread to the GUI thread.

Suppose we want to display the name of the first person in the
database in a QLabel

from camelot.view.model_thread import get_model_thread
from PyQt4 import QtGui

class PersonLabel(QtGui.QLabel):

 def __init__(self):
QtGui.QLabel.__init__(self)
mt = get_model_thread()
mt.post(self.strip_data_from_model, self.put_data_on_label)

 def strip_data_from_model(self):
from camelot.model.authentication import Person
return Person.query.first().name

 def put_data_on_label(self, name):
 self.setText(name)

When the strip_data_from_model method is posted to the Model Thread, it
will be executed within the Model Thread and its result (the name of the
person) will be posted back to the GUI thread. Upon arrival of the name
in the GUI thread the function put_data_on_label will be executed within
the GUI thread with as its first argument the name.

In reality, the stripping of data from the model and presenting this data
to the gui is taken care off by the proxy classes in camelot.view.proxy.

Actions

Proxy classes

[image: ../_images/collection_proxy.png]

Application speedup

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Camelot Documentation

Frequently Asked Questions

How to use the PySide bindings instead of PyQt ?

The Camelot sources as well as the example videostore application can be
converted from PyQt applications to PySide with the camelot_admin tool.

Download the sources and position the shell in the main directory, and then
issue these commands:

python camelot/bin/camelot_admin.py to_pyside .

This will create a subdirectory ‘to_pyside’ which contains the converted
source code.

Can I use Camelot with an existing database ?

Both Declarative and Camelot can be used with an existing schema. However,
since Camelot acts on objects, the classes for those objects still need to
be defined.

Here’s a short example of using camelot with an existing database :

from sqlalchemy.engine import create_engine
from sqlalchemy.pool import StaticPool

engine = create_engine('sqlite:///test.sqlite')
#
Create a table in the database using plain old sql
#
connection = engine.connect()
try:
 connection.execute("""drop table person""")
except:
 pass
connection.execute("""create table person (pk INTEGER PRIMARY KEY,
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL)""")
connection.execute("""insert into person (first_name, last_name)
 values ("Peter", "Principle")""")

#
Use declarative to reflect the table and create classes
#
from camelot.admin.entity_admin import EntityAdmin
from camelot.core.sql import metadata
from sqlalchemy.schema import Table
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base(metadata = metadata)

class Person(Base):
 __table__ = Table('person', Base.metadata,
 autoload=True, autoload_with=engine)

 class Admin(EntityAdmin):
 list_display = ['first_name', 'last_name']

#
Setup a camelot application
#
from camelot.admin.application_admin import ApplicationAdmin
from camelot.admin.section import Section
from camelot.core.conf import settings

class AppAdmin(ApplicationAdmin):

 def get_sections(self):
 return [Section('All tables', self, items = [Person])]

class Settings(object):

 def ENGINE(self):
 return engine

 def setup_model(self):
 metadata.bind = engine

settings.append(Settings())
app_admin = AppAdmin()

#
Start the application
#
if __name__ == '__main__':
 from camelot.view.main import main
 main(app_admin)

More information on using Declarative with an existing database schema can be found in the
Declarative [http://docs.sqlalchemy.org/en/rel_0_7/orm/extensions/declarative.html#using-reflection-with-declarative]
documentation.

Why is there no Save button ?

Early on in the development process, the controversial decision was made not
to have a Save button in Camelot. Why was that ?

	User friendlyness. One of the major objectives of Camelot is to be
user friendly. This also means we should reduce the number of ‘clicks’
a user has to do before achieving something. We believe the ‘Save’ click
is an unneeded click. The application knows when the state of a form is
valid for persisting it to the database, and can do so without user
involvement. We also want to take the ‘saving’ issue out of the mind
of the user, he should not bother wether his work is ‘saved’, it simply is.

	Technical. Once you decide to use a Save button, you need to
ask yourself where you will put that button and what its effect will be.
This question becomes difficult when you want to enable the user to edit
a complex datastructure with one-to-many and many-to-many relations. Most
applications solve this by limiting the options for the user. For example,
most accounting packages will not allow you to create a new customer when
you are creating a new invoice. Because when you save the invoice, should
the customer be saved as well ? Or should the customer have it’s own save
button ? Those packages therefor require the user to first create a
customer, and only then can an invoice be created. These are limitation we
don’t want to impose with Camelot.

	Consistency between editing in table or form view. We wanted the table
view to be really easy to edit (to behave a bit like a spreadsheet), so it’s
easy for the user to do bulk updates. As such the user should not be
bothered by pressing the Save button all the time. If there is
no need to save in the table view, there should be no need in the form view
either.

Some couter arguments for this decision are :

	But what if the user wants to ‘modify’ a form and not save those changes ?
This is indeed something that is not possible without a Save and
it accompanying Cancel button. But this is something a developer
will do a lot while testing an application, but is outside of the normal
workflow of a user. Most users typically want to enter or modify as much
data as possible, they are not testing the application to see how it would
behave on certain data input.

	A form should be validated before it is saved. In an application there are
two levels of validation. The first level is to validate before something
is persisted into the database, this can be done in Camelot using a custom
implementation of a
camelot.admin.validator.entity_validator.EntityValidator. The
second level is a validation before the entered data can be used in the
business process. To do this second level validation, one can use state
changes (Action buttons that change the state of a form, eg from ‘Draft’
to ‘Complete’). A good example of this is when entering a booking into
an accounting package. When a booking is entered, it can only be used when
debit equals credit. What would happen when this validation is done at the
moment the form is ‘saved’. Suppose a user has been working for the better
part of the day on a complex booking, but is not done yet at the end of
the day. Since he cannot yet save his work he has two options, discard it
and restart the next day, or enter some bogus data to be able to save it.
What will happen in the later case when his manager is creating a report
a bit later. So the correct situation in this case is having your work
saved at all times, and to put your booking from a ‘draft’ state to a
‘complete’ state once its ready. This state change will then check if
debit equals credit.

Two years after we made this move, Apple decided to follow our
example : http://www.apple.com/macosx/whats-new/auto-save.html

But my users really want a Save button ?

We advise you to listen very well to the arguments the user has for wanting
a Save button. You will be able to solve most of them by using
state changes instead of a Save button. The other arguments
probably have to do with expections users have from using other applications,
as for those simply ask the users to try to work for a week without a
Save button and get back to you if after that week, they still
have issues with it. Please let us know when they do !

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

Advanced Topics

This is documentation for advanced usage of the Camelot library.

	Internationalization
	How to Specify Translation Strings

	Translating Camelot itself

	Where to put Translations

	Loading translations

	End user translations

	Unittests

	Deployment
	Building .egg files

	Windows deployment
	Through CloudLaunch

	Using .egg files

	Linux deployment

	Authentication and permissions

	Development Guidlines
	Python, PyQt and Qt objects

	Debugging Camelot and PyQt
	Log the SQL Queries

	Enable core dumps
	Linux

	Windows

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Internationalization

The Camelot translation system is a very small wrapper around the Qt translation
system. Internally, it uses the QCoreApplication.translate() method to
do the actual translation.

On top of that, it adds the possibility for end users to change translations
theirselves. Those translations are stored in the database. This mechanism
can be used to adapt the vocabulary of an application to that of a specific
company.

How to Specify Translation Strings

Translation strings specify “This text should be translated.”. It’s your responsibility
to mark translatable strings; the system can only translate strings it knows about.

from camelot.core.utils import ugettext as _

message = _("Hello brave new world")

The above example translates the given string immediately. This is not always desired,
since the message catalog might not yet be loaded at the time of execution. Therefore
translation strings can be specified as lazy. They will only get translated when they
are used in the GUI.

from camelot.core.utils import ugettext_lazy as _

message = _("This translation is delayed")

Translation strings in model definitions should always be specified as lazy translation
strings. Only lazy translation strings can be translated by the end user in various
forms.

Translating Camelot itself

To extract translation files from the Camelot source code,
Babel [http://babel.edgewall.org/] needs to be installed.

In the root folder of the Camelot source directory.

First update the translation template:

python setup.py extract_messages

If your language directory does not yet exists in ‘camelot/art/translations’:

python setup.py init_catalog --locale nl

If it allready exists, update it from the translation template:

python setup.py update_catalog

In the language subdirectory of ‘camelot/art/translations’, there is a
subdirectory ‘LC_MESSAGES’ which contains the .po translation file.
This translation file can then be translated with linguist

linguist camelot.po

And edit it :

[image: ../_images/camelot_qt_linguist.png]

Make sure to save them back as GNU gettext .po files.

Then the .po file should be converted to a .qm file to make it loadable
at run time:

lrelease camelot.po

Don’t forget to post your new .po file on the mailing list, so it can
be included in the next release.

For more background information, please have a look at the
Babel Documentation [http://babel.edgewall.org/wiki/Documentation/setup.html]

Where to put Translations

Translations can be put in 2 places :

	in po files which have to be loaded at application startup

	in the Translation table : this table is editable by the users via the Configuration
menu. This is the place to put translations that should be editable by the users. At
application startup, all records in this table related to the current language will be
put in memory.

Loading translations

Translations are loaded when the application starts. To enforce the loading
of the correct translation file, one should overwrite the
camelot.admin.application_admin.ApplicationAdmin.get_translator() method.
This method should return the proper QtCore.QTranslator object.

End user translations

Often it is convenient to let the end user create or update the translations of an
application, this allows the end user to put a lot of domain knowledge into the application.

Therefore, all lazy translation strings can be translated by the end user. When the user
right-clicks on a label in a form, he can select Change translation from the menu and
update the current translation (for the current language). This effectively updates the
content of the Translation table.

After some time the developer can take a copy of this table and decide to put these translations
in po files.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Unittests

	Release:	default

	Date:	April 23, 2013

[image: ../_images/unittest_dream.png]

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Deployment

After developing a Camelot application comes the need to deploy the
application, either at a central location or in a distributed setup.

Building .egg files

Whatever the deployment setup is, it is almost always a good idea to
distribute your application as a single .egg file, containing as much
as possible the dependencies that are likely to change often during
the lifetime of the application. Resource files (like icons or templates
can be included in this .egg file as well).

Building .egg files is a relatively straightforward process using
setuptools.

When a new Camelot project was created with camelot_admin, a
setup.py file was made that is able to build eggs using this
command

python -O setup.py bdist_egg --exclude-source-files

Note

The advantage of using .egg files comes when updating the application, simply
replacing a single .egg file at a central location is enough to migrate all
your users to the new version.

Windows deployment

Through CloudLaunch

CloudLaunch is a service to ease the deployment and update process of Python
applications. It’s main features are :

	Building Windows Installers

	Updating deployed applications

	Monitoring of deployed applications

As CloudLaunch is build on top of setuptools, it works with .egg files,
CloudLaunch works cross platform, so it’s perfectly possible to build a
Windows installer, or update a Windows application from Linux.

To build a .egg file that can be deployed through CloudLaunch, use the
command:

python.exe setup.py bdist_cloud

This will create 2 files in the dist/cloud folder, a traditional .egg file and
a .cld file. The .egg file is a normal .egg file with some additional metadata
included, and without sources. The .cld file contains metadata of the .egg
file, such as its checksum, and information on how get updated versions of the
.egg once deployed.

To make sure the application will run smoothly once deployed, one should test
if the generated .egg and .cld combination works:

cd dist\cloud
cloudlaunch.exe --cld-file movie_store.cld
cd ..\..

If this is working, a Windows installer can be build:

python.exe setup.py bdist_cloud wininst_cloud

This will generate a movie_store.exe file in distcloud, which is an installer
for your application. The end user can now install and run your application on
his machine.

Now is the time to monitor the application as it runs on the end user machine:

python.exe setup.py monitor_cloud

Will display all the logs issued on the end user machine if that machine is
connected to the internet.

When development of the application continues, it will be needed to present the
user with an updated version of the application. This is done with the
command:

python.exe setup.py bdist_cloud upload_cloud

This will send an updated .egg and .cld file to the central repository, where
the end-user application will check for updates. If such an update is detected,
the application will download the new egg and run from that one.

Using .egg files

First of all python needs to be available on the machines that are going
to run the application. The easies way to achieve this is by installing the
Conceptive Python Distribution (CPD) [http://www.python-camelot.com/cpd.html]
on the target machine. This Python distribution can be installed in
End user mode, which means the user will not notice it is installed.

[image: ../_images/cpd_installer.png]
Notice that for python to be available, it not
necessarily needs to be installed on every machine that runs the application.
Installing python on a shared disk of a central server might just be enough.

Also put the .egg file on a shared drive.

Then, the easiest way to proceed is to put a little .vbs bootstrap script on
the shared drive and put shortcuts to it on the desktops of the users. The
.vbs script can look like this:

Set WshShell = WScript.CreateObject("WScript.Shell")
WshShell.Environment("Process").item("PYTHONPATH") = "R:\movie_store-01.01-py2.7.egg;"
WshShell.Run """C:\Program Files\CPD\pythonw.exe"" -m movie_store.main"

Linux deployment

The application can be launched by putting the .egg in the PYTHONPATH
and starting python with the -m option:

export PYTHONPATH = /mnt/r/movie_store-01.01-py2.7.egg
python.exe -m movie_store.main

Don’t forget that all dependencies for your application should be installed
on the system or put in the PYTHONPATH

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Authentication and permissions

fine grained authentication and authorization is not yet included as part of the Camelot framework.

what is included is the function :

camelot.model.authentication.get_current_authentication()

which returns an object of type :class:`camelot.model.authentication.AuthenticationMechanism

where the username is the username of the currently logged in user (because on most desktop
apps, you don’t want a separate login process for your app, but rely on that of the OS).

this function can then be used if you build the Admin classes for your application :

	set the editable field attribute to a function that only
returns Thrue when the current authentication requires
editing of fields

	in the ApplicationAdmin.get_sections method, to hide/show
sections depending on the logged in user

	in the EntityAdmin subclasses, in the get_field_attributes
method, to set fields to editable=False/True depending on
the logged in user

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Development Guidlines

	Date:	April 23, 2013

Python, PyQt and Qt objects

Python and Qt both have their own way of tracking objects
and deleting them when they are no longer needed :

	Python does reference counting supported
by a garbage collector.

	Qt has parent child relations between objects. When a
parent object is deleted, all its child objects are
deleted as well.

PyQt merges these two concepts by introducing ownership
of objects :

	Pure python objects are owned by Python, Python takes
care of their deletion.

	Qt objects wrapped by Python are either:
	owned by Qt when they have a parent object, Qt will
delete them, when their parent object is deleted

	owned by Python when they have no parent, Python will
delete them, and trigger the deletion of all their children
by Qt

	Qt objects that are not wrapped by Python, those are in
one way or another children of a Qt object that is wrapped
by Python, they will get deleted by Qt.

The difficult case in this scheme is the case where Qt objects
are wrapped by Python but have a parent object. This can happen
in two ways :

	A Qt object is created in python, but with a parent

from PyQt4 import QtCore

parent = QtCore.QObject()
child = QtCore.QObject(parent=parent)

In this case PyQt is able to track when the object is
deleted by Qt and raises exceptions accordingly when a
method of underlying Qt object is called after the deletion

parent = QtCore.QObject()
child = QtCore.QObject(parent=parent)
del parent
print child.objectName()

will raise a RuntimeError: underlying C/C++ object has been deleted.

	A Qt object is returned from a Qt function that created the object
without Python being aware of it. When the object is passed as a
return value PyQt will wrap it as a Python object, but is unable
to track when Qt deletes it

from PyQt4 import QtGui
app = QtGui.QApplication([])
window = QtGui.QMainWindow()
statusbar = window.statusBar()
del window
statusbar.objectName()

Will result in a segmentation fault.

A segmentation fault will happen in several cases :

	Python tries to delete a Qt object already deleted by Qt

	PyQt calls a function of a Qt object already deleted

	Qt calls a function of a Qt object already deleted by Python

In principle, PyQt is able to handle all cases where the object
has been created by Python. However, when this ownership tracking
is combined with threading and signal slot connections, a lot
of corner cases arise in both Qt and PyQt.

To play on safe, these guidelines are used when developing Camelot :

	Never keep a reference to objects created by Qt having a parent,
so only use:

window.statusBar().objectName()

	Keep references to Qt child objects as short as possible, and
never beyond the scope of a method call. This is possible because
qt allows objects to have a name.

so instead of doing

from PyQt4 import QtGui

class Parent(QtGui.QWidget):

 def __init__(self):
 super(Parent, self).__init__()
 self._child = QtGui.QLabel(parent=self)

 def do_something(self):
 print self._child.objectName()

this is done

from PyQt4 import QtGui

class Parent(QtGui.QWidget):

 def __init__(self):
 super(Parent, self).__init__()
 child = QtGui.QLabel(parent=self)
 child.setObjectName('label')

 def do_something(self):
 child = self.findChild(QtGui.QWidget, 'label')
 if child != None:
 print child.objectName()

should the child object have been deleted by Qt, the findChild method
will return None, and a segmentation fault is prevented. An explicit
check for None is needed, since even if the widget exists, it might
evaluate to 0 or an empty string.

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

 	Camelot Documentation contents

 	Advanced Topics

Debugging Camelot and PyQt

Log the SQL Queries

Configure SQLAlchemy to log all queries:

logging.getLogger('sqlalchemy.engine').setLevel(logging.DEBUG)

Enable core dumps

Linux

For older gdb versions (pre 7),
copy the gdbinit file from the python Misc folder:

cp gdbinit ~/.gdbinit

use:

ulimit -c unlimited

load core file in gdb:

gdb /usr/bin/python -c core

In newer gdb versions, Python can run inside gdb:

http://bugs.python.org/issue8032

To give gdb python super powers:

(gdb) python
>import sys
>sys.path.append('Python-2.7.1/Tools/gdb/libpython.py')
>import libpython
>reload(libpython)
>
>end

https://fedoraproject.org/wiki/Features/EasierPythonDebugging

Windows

	Install Debugging tools for Windows from MSDN

Install ‘Debug Diagnostic Tool’

http://stackoverflow.com/questions/27742/finding-the-crash-dump-files-for-a-c-app

http://blogs.msdn.com/b/tess/

Setup Qt Creator

http://doc.qt.nokia.com/qtcreator-snapshot/creator-debugger-engines.html

	Install Windows Sysinternals process utilities from MSDN

http://technet.microsoft.com/en-us/sysinternals/bb795533

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

Camelot, Qt, PyQt Licenses

Camelot License

Camelot is Copyright (C) 2007-2013 Conceptive Engineering bvba.
www.conceptive.be / info@conceptive.be

You may use, distribute and copy Camelot under the terms of GNU General
Public License version 2, which is displayed below.

A commercial license can be obtained from Conceptive Engineering bvba
Please mail to info@conceptive.be for inquiries.

	GNU GENERAL PUBLIC LICENSE

	Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software–to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

	
	You may modify your copy or copies of the Program or any portion

	of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

	
	You may not copy, modify, sublicense, or distribute the Program

	except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

	
	You are not required to accept this License, since you have not

	signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w’ and `show c’; they could even be
mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

Large parts of the source in camelot/core/orm/ are based on the Elixir
library (http://elixir.ematia.de).

The Elixir library was released under the MIT license, with the following
copyright notice :

This is the MIT license: http://www.opensource.org/licenses/mit-license.php

Copyright (c) 2007, 2008 Jonathan LaCour, Daniel Haus, and Gaetan de Menten. and
contributors. SQLAlchemy is a trademark of Michael Bayer.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

PyQt License

Qt License

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Camelot documentation

Camelot’s Documentation Copyright

Copyright (C) 2007-2012 Conceptive Engineering bvba. All rights reserved.
www.conceptive.be / project-camelot@conceptive.be

This file is part of the Camelot Library.

This file may be used under the terms of the GNU General Public
License version 2.0 as published by the Free Software Foundation
and appearing in the file LICENSE.GPL included in the packaging of
this file. Please review the following information to ensure GNU
General Public Licensing requirements will be met:
http://www.trolltech.com/products/qt/opensource.html

If you are unsure which license is appropriate for your use, please
review the following information:
http://www.trolltech.com/products/qt/licensing.html or contact
project-camelot@conceptive.be.

This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

For use of this library in commercial applications, please contact
project-camelot@conceptive.be

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Camelot documentation

Camelot, Qt, PyQt Licenses

Camelot License

Camelot is Copyright (C) 2007-2013 Conceptive Engineering bvba.
www.conceptive.be / info@conceptive.be

You may use, distribute and copy Camelot under the terms of GNU General
Public License version 2, which is displayed below.

A commercial license can be obtained from Conceptive Engineering bvba
Please mail to info@conceptive.be for inquiries.

	GNU GENERAL PUBLIC LICENSE

	Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software–to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

	
	You may modify your copy or copies of the Program or any portion

	of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

	
	You may not copy, modify, sublicense, or distribute the Program

	except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

	
	You are not required to accept this License, since you have not

	signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w’ and `show c’; they could even be
mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

Large parts of the source in camelot/core/orm/ are based on the Elixir
library (http://elixir.ematia.de).

The Elixir library was released under the MIT license, with the following
copyright notice :

This is the MIT license: http://www.opensource.org/licenses/mit-license.php

Copyright (c) 2007, 2008 Jonathan LaCour, Daniel Haus, and Gaetan de Menten. and
contributors. SQLAlchemy is a trademark of Michael Bayer.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

PyQt License

Qt License

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Camelot documentation

Camelot’s Documentation Copyright

Copyright (C) 2007-2012 Conceptive Engineering bvba. All rights reserved.
www.conceptive.be / project-camelot@conceptive.be

This file is part of the Camelot Library.

This file may be used under the terms of the GNU General Public
License version 2.0 as published by the Free Software Foundation
and appearing in the file LICENSE.GPL included in the packaging of
this file. Please review the following information to ensure GNU
General Public Licensing requirements will be met:
http://www.trolltech.com/products/qt/opensource.html

If you are unsure which license is appropriate for your use, please
review the following information:
http://www.trolltech.com/products/qt/licensing.html or contact
project-camelot@conceptive.be.

This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

For use of this library in commercial applications, please contact
project-camelot@conceptive.be

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Camelot documentation

Index

 P
 | S

P

 	

 	
 Python Enhancement Proposals

 	

 	PEP 342

 	PEP 380

S

 	

 	SQLALchemy

 Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/camelot_qt_linguist.png
Source text

Director

English translation

Regisseur

English translator comments

_static/minus.png

_images/spyder-new-project.png
File Edt Search Source Run Interpreters Tools View

WX:UQ O b= -

2P YIE
Project explorer SX & x

rsWestiboauments| (4] [2eypon1@ | ooosar [A

Python 2.7.2 (default, Dec 19 2011,
13:56:30) [MSC v.1500 32 bit (Intel)
1 on win32

Type "help”, "copyright”, "credits”
r "license” for more information.
>>

End-of-ines: CRLF Encoding: UTF-3 Line 1 Column: 1

_static/picture3.png

_static/collection_proxy.png
Gui
Theeap

= },arébttd

4..A00

VaLve LRoxy
2e. Sl Loaping €

Lisr of obdEcrs

data (],

: "7"4 SToRe yagyz,
5/&74‘ e pﬂ.”,

et Date s,

;
B Ghcvss 4

_static/action_button.png
Movie 1 ; The Big Lebowski

Title

Cover image

Shart description
Release date.
Genre

Director

The Big Lebowski

The Dude wants his rug back It really tied the room togeter.

603193

Comedy

Joel Coen

A2

Actons

_static/new-record.png
© Home] Transiations (@ |
Transiations L
R ————

LN Film

search.html

 Navigation

 		
 index

 		Camelot documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009 - 2013, Conceptive Engineering.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/color.png
Color

_images/cpd_installer1.png
18 Setup - Conceptive Python Distribution

Select Components
‘Which components should be instali?

Selectthe components you want o instal; cear the compornerts you do not wart o
instal.Click Nest when you ae read) to cortinue.

Develope [vth enties in the stat menu]

User (wihout erires n the startmenu)

_static/up-pressed.png

_static/admin_classes.png
TIwL - 101

Ty >2a0y

_static/camelot-new-project.png
EIE R 26
Proctexlorer & X Edtor
rstrestipoament] (L)

4 [Videostore

Permissions: R

‘Complete the form and press the OK button

Source Fers\TestDocuments Wideostore
name Migeostore:

‘uthor iy Company

Hodule [videostore

Domain mydomain.com

Application url https /i, python-camelot.com

Help url fuwnw python-<amelotcomdocs.ht
Installer &

[Cena] o]

Console | Historylog

End-of-lines: CRLF Encoding: UTF-8 Line 1 Columm: 1

_images/field_attributes.png
Phecessom » g
BAKGCoswD_ro; 09

LN

Aoy o
Hoxinon = 10

= T
SOk me CAlwaToR e

_static/comment.png

_images/final_report.png
Print Preview: document

The Big Lebowski

Movie Summary

Descriptions The Duds wants his rug back. It realytied th room together
Refaase date 1995 0315

Genres Comedy

Birector: Jod Goen

copyright 2010 - Camelot

_static/ajax-loader.gif

_static/picture1.png
File Edit Search Source Run Interpreters Tools View 7

DAH® [HEHE

Bestand Bewerken Weergave Help

FEEEwL g o

_static/file.png

_static/field_attributes.png
Phecessom » g
BAKGCoswD_ro; 09

LN

Aoy o
Hoxinon = 10

= T
SOk me CAlwaToR e

_static/cpd_installer.png
18 Setup - Conceptive Python Distribution

Select Components
‘Which components should be instali?

Selectthe components you want o instal; cear the compornerts you do not wart o
instal.Click Nest when you ae read) to cortinue.

Develope [vth enties in the stat menu]

User (wihout erires n the startmenu)

_static/navigation-pane.png

_images/template_document_word.png
4 ol (ootetekst) < 11 - A M (s

B; B 7 U -abe x, X
S [%| M= == e s sewaen
g AT A ke K5 BE 0T | S v
e e <

Full Name
street

Poscode Commune

Date.

Dear,

Loremipsum dolor sit amet, consectetur adipiscing elit. Proin at nunc metus, acfringilla erat. Nullam
sollicitudin pharetrayestibulum. Doneccondimentum metus nec purus mollis eu eleifend massa
‘molestie. Nullam sed enim molestie libero tempus semperid gravida quam. Suspendisse lectusante,

< T W

T w rI&

“womd

Pagina: 1van1 | Woorden:96 | 5 Nederlands Belgie)

Eug

_static/down-pressed.png

_images/simple_report.png
Print Preview: document

This will become the movie report of The Big
Lebowski!

_static/rating.png
Title [Monty Python and the Holy Grail

Raing & &t F ¢ &

_images/start-spyder.png
mxgm, L b =) al v-la-¢ 5|8~

myna.hu 8 x 8 X Consdle 8 x
rs\TestPocuments u [2eywon1@ | 000736 [A
Seiect an osting workspace director, of Greate 2 new onE Python 2.7.2 (default, Dec 19 2011,

13:56:30) [MSC v.1500 32 bit (Intel)
1 on win32

Type "help”, "copyright”, "credits”
r "license” for more information.
>>

Permissions: R4 End-of-lines: CRLF Encoding: UTF-8 Line 1 Column: 1

_images/unittest_dream.png
UMe o0E Decapimg

Dymianre vs g i

_static/file_delegate.png
(B SettingsKecTas py

_static/spyder-new-project.png
File Edt Search Source Run Interpreters Tools View

WX:UQ O b= -

2P YIE
Project explorer SX & x

rsWestiboauments| (4] [2eypon1@ | ooosar [A

Python 2.7.2 (default, Dec 19 2011,
13:56:30) [MSC v.1500 32 bit (Intel)
1 on win32

Type "help”, "copyright”, "credits”
r "license” for more information.
>>

End-of-ines: CRLF Encoding: UTF-3 Line 1 Column: 1

_static/picture7.png
Project Camelot - [Movies]

_static/final_report.png
Print Preview: document

The Big Lebowski

Movie Summary

Descriptions The Duds wants his rug back. It realytied th room together
Refaase date 1995 0315

Genres Comedy

Birector: Jod Goen

copyright 2010 - Camelot

_static/start-spyder.png
mxgm, L b =) al v-la-¢ 5|8~

myna.hu 8 x 8 X Consdle 8 x
rs\TestPocuments u [2eywon1@ | 000736 [A
Seiect an osting workspace director, of Greate 2 new onE Python 2.7.2 (default, Dec 19 2011,

13:56:30) [MSC v.1500 32 bit (Intel)
1 on win32

Type "help”, "copyright”, "credits”
r "license” for more information.
>>

Permissions: R4 End-of-lines: CRLF Encoding: UTF-8 Line 1 Column: 1

_static/up.png

_static/picture5.png
Basic | offcal | work |

i
i
Il

i
()
Qw0

Contact mechanism Comment From date

@0

Comment

BX0A4AEHEE

_static/enumeration.png
State

Planned

_static/image.png

_images/table-view.png
Translations

_images/navigation-pane.png

_static/onetomany.png
[/ Terry Gitiam

& @

_images/action_button.png
Movie 1 ; The Big Lebowski

Title

Cover image

Shart description
Release date.
Genre

Director

The Big Lebowski

The Dude wants his rug back It really tied the room togeter.

603193

Comedy

Joel Coen

A2

Actons

_static/template_document_word_save_as.png
and [IESRL

% catior

DB
Piakken

- I A

Kembord s

Full Name
street

Poscode Comm|

Date.

Dear,

Lorempsum d
sollicitudin phag
molestie. Nulla

« T

invoegen

oofdtekst) <11 -

Opslaan als

Opsisanin

Pagina-ndeling Verwizingen Verzendijsten Controleren Beeld)

[ty bocnents 3

Verzounde
S sationen

ty Recene
O ocuments

@ vesicon

o

S Documens
y

2 Conpurer

Hy Natwerk
e

By s

@y peures

Bestandsnaam tenplate

Opslaanalsi [yord xi-document

Paginai1vanl | Woorden:9 | <3 Nederlands (Belgié) |

_images/camelot_qt_linguist.png
Source text

Director

English translation

Regisseur

English translator comments

_static/new-form.png
& New Transhation ==
B e 9

Source
Language |Englsh 5
Ve

ud o=

_static/picture4.png
=1}

_static/down.png

_static/toolbar.png

_static/movie-table.png

_images/movie-table.png

_static/main-window.png

_static/virtualaddress_editor.png
[emait || [projectcamelot@conceptivebe

_static/simple_report.png
Print Preview: document

This will become the movie report of The Big
Lebowski!

_images/cpd_installer.png
18 Setup - Conceptive Python Distribution

Select Components
‘Which components should be instali?

Selectthe components you want o instal; cear the compornerts you do not wart o
instal.Click Nest when you ae read) to cortinue.

Develope [vth enties in the stat menu]

User (wihout erires n the startmenu)

_images/camelot-new-project.png
EIE R 26
Proctexlorer & X Edtor
rstrestipoament] (L)

4 [Videostore

Permissions: R

‘Complete the form and press the OK button

Source Fers\TestDocuments Wideostore
name Migeostore:

‘uthor iy Company

Hodule [videostore

Domain mydomain.com

Application url https /i, python-camelot.com

Help url fuwnw python-<amelotcomdocs.ht
Installer &

[Cena] o]

Console | Historylog

End-of-lines: CRLF Encoding: UTF-8 Line 1 Columm: 1

_static/picture2.png

_static/budget.png
Total

Lines.

4060.00

Amount

_static/template_document_word.png
4 ol (ootetekst) < 11 - A M (s

B; B 7 U -abe x, X
S [%| M= == e s sewaen
g AT A ke K5 BE 0T | S v
e e <

Full Name
street

Poscode Commune

Date.

Dear,

Loremipsum dolor sit amet, consectetur adipiscing elit. Proin at nunc metus, acfringilla erat. Nullam
sollicitudin pharetrayestibulum. Doneccondimentum metus nec purus mollis eu eleifend massa
‘molestie. Nullam sed enim molestie libero tempus semperid gravida quam. Suspendisse lectusante,

< T W

T w rI&

“womd

Pagina: 1van1 | Woorden:96 | 5 Nederlands Belgie)

Eug

_static/picture8.png
Project Camelot - [Movies]

Shortdescription Release date
Agroup of Earthc... | 06/11/1962

Short descripton randed alien botanist return home.

os/11/1982 (2]

QO

New Directors

Name Steven Spieberg

_static/comment-bright.png

_images/template_document_word_save_as.png
and [IESRL

% catior

DB
Piakken

- I A

Kembord s

Full Name
street

Poscode Comm|

Date.

Dear,

Lorempsum d
sollicitudin phag
molestie. Nulla

« T

invoegen

oofdtekst) <11 -

Opslaan als

Opsisanin

Pagina-ndeling Verwizingen Verzendijsten Controleren Beeld)

[ty bocnents 3

Verzounde
S sationen

ty Recene
O ocuments

@ vesicon

o

S Documens
y

2 Conpurer

Hy Natwerk
e

By s

@y peures

Bestandsnaam tenplate

Opslaanalsi [yord xi-document

Paginai1vanl | Woorden:9 | <3 Nederlands (Belgié) |

_static/manytoone.png
Terry Gillam

_images/admin_classes.png
TIwL - 101

Ty >2a0y

_static/table-view.png
Translations

_static/plus.png

_images/new-form.png
& New Transhation ==
B e 9

Source
Language |Englsh 5
Ve

ud o=

_images/collection_proxy.png
Gui
Theeap

= },arébttd

4..A00

VaLve LRoxy
2e. Sl Loaping €

Lisr of obdEcrs

data (],

: "7"4 SToRe yagyz,
5/&74‘ e pﬂ.”,

et Date s,

;
B Ghcvss 4

_images/toolbar.png

_static/richtext.png
Description

D0 B4A P55 W N

The copuriaht to the record is still owned by the BBC,making it one of the few pieces of
material the Pythans| themseives donot own. This is also the reason why it did not gain a
2006 specialedition release. One of the tracks makes specific mention to the albumbeing
in stereo, and Graham Chapman demonstrates it by walking from onespeaker to another.
The effect was totally lost 25 the album wasrecorded in mono, which the Pythons didn't
know at the time. They feltdisenchanted by the BEC's album producing methods, and for (<]

_static/plaintext.png
Title [Monty Python Flying Circus

_static/picture6.png

_images/main-window.png

_static/manytomany.png
Tags.

Bjea
e

_static/unittest_dream.png
UMe o0E Decapimg

Dymianre vs g i

_static/interval_column_delegate.png
Intervals

Performed duration

900

_images/new-record.png
© Home] Transiations (@ |
Transiations L
R ————

LN Film

